Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Base changes in the recognition site for ter functions in lambdoid phage DNA

Abstract

THE DNA of bacteriophage λ is a linear duplex of about 45,000 base pairs with single-stranded projections of twelve bases at its 5′ termini1,2. These projections are of complementary base sequence3 and result from the action of a λ gene product4, ter, on a concatenated form of the phage DNA5. The base sequences of the single-stranded regions have been determined from repair reactions with DNA polymerase and radioactively labelled nucleoside triphosphates3 and from analyses of DNase digestion products from 5′-terminally labelled DNA6. The 3′ terminal sequences of λ DNA have also been determined by analysis of DNase digests of DNA labelled at or near its 3′ termini in exonuclease-repair reactions with T4 DNA polymerase7. Together, these results gave a sequence of 25 base pairs in the region of the DNA molecule at which the ter function interacts (cos). The sequence between the nicks that the ter enzyme would be required to make in the concatenated DNA is bisected by an axis of twofold rotational symmetry. This sequence provided an example of discontinuous or hyphenated symmetry in a DNA sequence recognised by a protein7. The base sequences of the lac operator8, the λ, promoter9, and the promoter10 for tRNATyrsuIII also contain hyphenated elements of symmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hershey, A. D., and Burgi, E., Proc. natn. Acad. Sci. U.S.A., 53, 326–328 (1965).

    Article  ADS  Google Scholar 

  2. Strack, H. B., and Kaiser, A. D., J. molec. Biol., 12, 36–49 (1965).

    Article  CAS  Google Scholar 

  3. Wu, R., and Taylor, E., J. molec. Biol., 57, 491–511 (1971).

    Article  CAS  Google Scholar 

  4. Mousset, S., and Thomas, R., Nature, 221, 242–244 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Skalka, A., in The Bacteriophage Lambda (edit. by Hershey, A. D.) (Cold Spring Harb. Lab., New York, 1971).

    Google Scholar 

  6. Murray, K., and Murray, N. E., Nature new Biol., 243, 134–139 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Weigel, P. H., Englund, P. T., Old, R. W., and Murray, K., Proc. natn. Acad. Sci. U.S.A., 70, 1151–1155 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Gilbert, W., and Maxam, A., Proc. natn. Acad. Sci. U.S.A., 70, 3581–3584 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Maniatis, T., Ptashne, M., Barrell, B. G., and Donelson, J., Nature, 250, 394–397 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Sekiya, T., and Khorana, H. G., Proc. natn. Acad. Sci. U.S.A., 71, 2978–2982 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Szpirer, J., and Brachet, P., Mol. gen. Genet., 108, 78–92 (1970).

    Article  CAS  Google Scholar 

  12. Rock, S., et al., J. gen. Virol., 22, 425–429 (1974).

    Article  CAS  Google Scholar 

  13. Murray, K., Biochem. J., 131, 569–583 (1973).

    Article  CAS  Google Scholar 

  14. Southern, E. M., and Mitchell, A. R., Biochem. J., 123, 613–617 (1971).

    Article  CAS  Google Scholar 

  15. Sanger, F., Brownlee, G. G., and Barrell, B. G., J. molec. Biol., 13, 373–398 (1965).

    Article  CAS  Google Scholar 

  16. Clausen, T., Analyt. Biochem., 22, 70–73 (1967).

    Article  Google Scholar 

  17. Southern, E. M., Analyt. Biochem., 12, 317–318 (1974).

    Article  Google Scholar 

  18. Morrison, A., and Murray, K., Biochem. J., 141, 321–330 (1974).

    Article  CAS  Google Scholar 

  19. Murray, K., and Old, R. W., Prog. Nucleic Acid Res. Mol. Biol., 14 (edit. by Cohn, W. E.), 117–185 (Academic, New York, 1974).

    Google Scholar 

  20. Weil, J., and Signer, E. R., J. molec. Biol., 34, 273–279 (1968).

    Article  CAS  Google Scholar 

  21. Gottesman, M. E., and Weisberg, R. A., in The Bacteriophage Lambda (edit. by Hershey, A. D.), 113–138 (Cold Spring Harb. Lab., New York, 1971).

    Google Scholar 

  22. Campbell, A., Virology, 14, 22–32 (1961).

    Article  CAS  Google Scholar 

  23. Matsushiro, A., Virology, 19, 475–482 (1963).

    Article  CAS  Google Scholar 

  24. Thomas, R., J. molec. Biol., 22, 79–95 (1966).

    Article  CAS  Google Scholar 

  25. Murray, N. E., Manduca de Ritis, P., and Foster, L., Mol. gen. Genet., 120, 261–281 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MURRAY, K., MURRAY, N. & BERTANI, G. Base changes in the recognition site for ter functions in lambdoid phage DNA. Nature 254, 262–265 (1975). https://doi.org/10.1038/254262a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/254262a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing