Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dark-repair of ultraviolet-induced pyrimidine dimers in the DNA of wild carrot protoplasts

Abstract

GREEN plants receive greater exposure to solar ultraviolet radiation and their germ cells (pollen) have a significantly greater potential for acquiring ultraviolet-induced genetic damage than do those of most animals1. Even though cells of the higher plants can photoreactivate ultraviolet damage (refs 2–5, and my unpublished data), the absence of dark-repair capability could be a significant disadvantage since some types of excisable ultraviolet-induced DNA damage are not photo-reactivable6. The capability for dark repair would become even more important if there were an increase in the fluence of solar ultraviolet reaching the Earth's surface7. Attempts to demonstrate excision of pyrimidine dimers in cells of Nicotiana, Haplopappus4, Ginkgo5 and Chlamydomonas8 have all given negative results. These data, taken with other assays for excision repair activity (unscheduled DNA synthesis9; repair replication10–12) have been interpreted as indicating a general absence of such capability in plants12. I have now found, however, that in cultured wild carrot cells, pyrimidine dimers can be excised in the dark and that the extent of dimer excision depends on the initial number of dimers induced by the ultraviolet dose. After ultraviolet fluences of about 10 J m−2, most of the dimers are excised within 24 h; but at fluences up to 30 J m−2, about 25 % remain unexcised in DNA. At fluences above 100 J m−2, dimer excision is almost completely eliminated, perhaps due to secondary effects of these very high ultraviolet doses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Swanson, C. P., and Stadler, L. J., in Radiation biology (edit. by Hollaender, A.) 2, 249 (McGraw-Hill, New York, 1955).

    Google Scholar 

  2. Klein, R. M., Physiol. Plant., 16, 73 (1963).

    Article  Google Scholar 

  3. Saito, N., and Werbin, H., Photochem. Photobiol., 9, 389 (1969).

    Article  CAS  Google Scholar 

  4. Trosko, J. E., and Mansour, V. H., Radiat. Res., 36, 333 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Trosko, J. E., and Mansour, V. H., Mutation Res, 7, 120 (1969).

    Article  CAS  Google Scholar 

  6. Resnick, M. A., Nature, 266, 377 (1970).

    Article  ADS  Google Scholar 

  7. Pollard, E. C., Photochem. Photobiol., 20, 301 (1974).

    Article  Google Scholar 

  8. Swinton, D. C., and Hanawalt, P. C., Photochem. Photobiol., 17, 361 (1973).

    Article  CAS  Google Scholar 

  9. Wolff, S., and Scott, D., Expl Cell Res., 55, 9 (1969).

    Article  CAS  Google Scholar 

  10. Swinton, D. C., and Hanawalt, P. C., Biochim. biophys. Acta, 294, 385 (1973).

    Article  CAS  Google Scholar 

  11. Painter, R. B., and Wolff, S., Mutation Res, 19, 133 (1973).

    Article  CAS  Google Scholar 

  12. Wolff, S., and Cleaver, J. E., Mutation Res, 20, 71 (1973).

    Article  CAS  Google Scholar 

  13. Rowland, G. P., Hart, R. W., and Yette, M. L., Mutation Res, 27, 81 (1975).

    Article  Google Scholar 

  14. Morowitz, H. J., Science, 111, 229 (1950).

    Article  ADS  CAS  Google Scholar 

  15. Jagger, J., Radiat. Res., 14, 394 (1961).

    Article  ADS  CAS  Google Scholar 

  16. Marmur, J., J. molec. Biol., 3, 208 (1961).

    Article  CAS  Google Scholar 

  17. Carrier, W. L., and Setlow, R. B., in Methods in Enzymology (edit. by Grossman, L., and Moldave, K.), 21, PtD, 230 (Academic, New York, 1971).

    Google Scholar 

  18. Setlow, R. B., and Carrier, W. L., J. molec. Biol., 17, 237 (1966).

    Article  CAS  Google Scholar 

  19. Regan, J. D., and Carrier, W. L., Biophys., J., 8, 319 (1968).

    Article  ADS  CAS  Google Scholar 

  20. Regan, J. D., and Carrier, W. L., Radiat. Res., 29, 176 (1974).

    Google Scholar 

  21. Zilberstein, A., Arzee, T., and Gressel, J., Cell Differ., 2, 205 (1973).

    Article  CAS  Google Scholar 

  22. Zilberstein, A., Arzee, T., and Gressel, J., Cell Differ., 2, 213 (1973).

    Article  CAS  Google Scholar 

  23. Cleaver, J. E., in Advances in radiation biology (edit. by Lett, J. T., Adler, H., and Zelle, M.), 4, 1 (Academic, New York, 1974).

    Google Scholar 

  24. Flavell, R. B., Bennett, M. D., Smith, J. B., and Smith, D. B., Biochem. Genet., 12, 257 (1974).

    Article  CAS  Google Scholar 

  25. Clayton, D. A., Doda, J. N., and Friedberg, E. C., Proc. natn. Acad. Sci. U.S.A, 71, 2777 (1974).

    Article  ADS  CAS  Google Scholar 

  26. Soifer, and Cieminis, Dokl. Biochem., 215, 175 (1974) (transl.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HOWLAND, G. Dark-repair of ultraviolet-induced pyrimidine dimers in the DNA of wild carrot protoplasts. Nature 254, 160–161 (1975). https://doi.org/10.1038/254160a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/254160a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing