Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active sodium transport by mammalian urinary bladder

Abstract

ALTHOUGH sodium reabsorption by the urinary bladder is important to urine formation in amphibia1–2, there have been few studies of ion movements3–7 across the mammalian bladder. If the mammalian bladder were an inert sac exhibiting only passive ion fluxes, as generally assumed, ion concentration gradients established between urine and plasma by the kidney would tend to dissipate in the bladder. We now report findings that may resolve this problem: mammalian bladder possesses, in addition to an exceptionally high electrical resistance, an aldosterone-stimulated Na+ reabsorptive mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bentley, P. J., Biol. Rev., 41, 275 (1966).

    Article  CAS  Google Scholar 

  2. Sharp, W. G., and Leaf, A., Physiol. Rev., 46, 593 (1966).

    Article  ADS  CAS  Google Scholar 

  3. Englund, S. E., Acta Radiol., Suppl., 135, 11 (1956).

    Google Scholar 

  4. Wickham, J. E. A., Invest. Urology, 2, 145 (1965).

    Google Scholar 

  5. Turnbull, G. J., and Fellows, G. J., Rev. Eur. Etudes Clin. Biol., 17, 745 (1972).

    CAS  Google Scholar 

  6. Rapoport, A., Nicholson, T. F., and Yendt, E. R., Am. J. Physiol., 198, 191 (1960).

    Article  CAS  Google Scholar 

  7. Hlad, C. J., Nelson, R., and Holmes, J. H., Am. J. Physiol. 184, 406 (1956).

    Article  CAS  Google Scholar 

  8. Lewis, S. A., Eaton, D., and Diamond, J. M., Biophys. J. (in the press).

  9. Fettiplace, R., Andrews, D. M., and Haydon, D. A., J. Membrane Biol., 5, 277 (1971).

    Article  CAS  Google Scholar 

  10. Helman, S. I., and Miller, D. A., Am. J. Physiol., 225, 972 (1973).

    Article  CAS  Google Scholar 

  11. Bentley, P. J., J. Physiol., Lond., 195, 317 (1968).

    Article  CAS  Google Scholar 

  12. Civan, M. M., and Hoffman, R. E., Am. J. Physiol., 220, 324 (1971).

    Article  CAS  Google Scholar 

  13. Bartter, F. C., Metabolism, 5, 369 (1956).

    CAS  PubMed  Google Scholar 

  14. Frömter, E., and Diamond, J. M., Nature new Biol., 235, 9 (1972).

    Article  Google Scholar 

  15. Moreno, J. H., Nature new Biol., 251, 150 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LEWIS, S., DIAMOND, J. Active sodium transport by mammalian urinary bladder. Nature 253, 747–748 (1975). https://doi.org/10.1038/253747a0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/253747a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing