Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activation of guanyl cyclase and intracellular cyclic GMP by fibroblast growth factor

Abstract

THE induction of cell growth by animal serum in quiescent cultured fibroblasts is preceded by a sequence of regulated steps1. These steps include stimulation of cellular transport systems1, protein synthesis1, ribosomal and tRNA synthesis2 and eventually the induction of DNA synthesis followed by cell division3,4. Two of the earliest changes observed after growth induction by serum are a transient increase in intracellular cyclic GMP5 (10-fold) and a decrease in cyclic AMP (two-to-threefold)5,6,7. It has been suggested that cyclic GMP acts as a positive intracellular signal for cell growth since intracellular cyclic GMP concentrations showed an early transient increase upon growth induction by phytohaemagglutinin whereas no changes were observed in cyclic AMP concentrations8, and additions of high, non-physiological (10−6 to 10−4 M) concentrations of cyclic GMP can induce substantial increases in DNA synthesis in resting fibroblasts5. Recently a new polypeptide hormone, fibroblast growth factor (FGF), was isolated from bovine pituitary glands9. FGF in combination with the glucocorticoid, hydrocortisone, and a nonspecific carrier protein, bovine serum albumin (BSA), can completely replace exogenously added serum in bringing about all the steps leading to the initiation of DNA synthesis and cell division in some lines of BALB/c 3T3 cells10. Hydrocortisone, as it fails to initiate DNA synthesis alone in the absence of serum11 is considered to potentiate the action of FGF9 (permissive effect).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hershko, A., Mamont, P., Shields, R., and Tomkins, G. M., Nature new Biol, 232, 206–211 (1971).

    CAS  Article  Google Scholar 

  2. 2

    Rudland, P. S., Proc. natn. Acad. Sci U.S.A., 71, 750–754 (1974).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Dulbecco, R., Nature, 227, 802–806 (1970).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Holley, R. W., and Kierman, J. A., Proc. natn. Acad. Sci. U.S.A., 60, 300–304 (1968).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Seifert, W., and Rudland, P. S., Nature, 248, 138–140 (1974).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Otten, J., Johnson, G. S., and Pastan, I., J. biol Chem., 247, 7082–7087 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Sheppard, J. R., Nature new Biol., 236, 14–16 (1972).

    CAS  Article  Google Scholar 

  8. 8

    Hadden, J. W., Hadden, E. M., Haddox, M. K., and Goldberg, N. D., Proc. natn. Acad. Sci. U.S.A., 69, 3024–3027 (1972).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Gospodarowicz, D., Nature, 249, 123–127 (1974).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Rudland, P. S., Seifert, W. E., and Gospodarowicz, D., Proc. natn. Acad. Sci. U.S.A., (in the press).

  11. 11

    Armelin, H. A., Proc. natn. Acad. Sci. U.S.A., 70, 2702–2706 (1973).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Robinson, G. A., Butcher, R. W., and Sutherland, E. W., Cyclic AMP Academic Press, NY 1971).

    Google Scholar 

  13. 13

    Ballard, P. L., and Tomkins, G. M., J. Cell Biol., 47, 222–234 (1970).

    CAS  Article  Google Scholar 

  14. 14

    Temin, H. M., J. cell. comp. Physiol., 69, 377–384 (1967).

    CAS  Article  Google Scholar 

  15. 15

    Hardman, J. G., and Sutherland, E. W., J. biol. Chem., 244, 6363–6370 (1969).

    CAS  PubMed  Google Scholar 

  16. 16

    White, A. A., and Aurbach, G. D., Biochim. biophys. Acta., 191, 686–697 (1969).

    CAS  Article  Google Scholar 

  17. 17

    Hardman, J. G., Beavo, J. A., Gray, J. P., Chrisman, T. D., Patterson, W. D., and Sutherland, E. W., Annals N. Y., Acad. Sci., 185, 27–35 (1971).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Steiner, A. L., Parker, C. W., and Kipnis, D. M., J. biol. Chem., 247, 1106–1113 (1972).

    CAS  Google Scholar 

  19. 19

    Jiménez de Asua, L., Surian, E. S., Flawia, M. M., and Torres, H. N., Proc. natn. Acad. Sci. U.S.A., 70, 1388–1392 (1973).

    ADS  Article  Google Scholar 

  20. 20

    Illiano, G., and Cuatrecasas, P., Science, 175, 906–908 (1972).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Beavo, J. A., Hardman, J. G., and Sutherland, E. W., J. biol. Chem., 246, 3841–3846 (1971). Proc. natn. Acad. Sci. U. S. A., 70, 2443–2447 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Illiano, G., Tell, G. P. E., Siegel, M. I., and Cuatrecasas, P., Proc. natn. Acad. Sci. U.S.A., 70, 2443–2447 (1973).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Goldberg, N. D., O'Dea, R. F., and Haddox, M. K., in Advances in Cyclic Nucleotide Research (edit. by Greengard, P., and Robison, A. G.), vol. 3, (Raven Press, New York, in the press).

  24. 24

    Pierson, R., and Temin, H. M., J. cell. comp. Physiol., 79, 319–330 (1972).

    CAS  Article  Google Scholar 

  25. 25

    Kimura, H., and Murad, F., J. biol. Chem., 249, 329–331 (1974).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

RUDLAND, P., GOSPODAROWICZ, D. & SEIFERT, W. Activation of guanyl cyclase and intracellular cyclic GMP by fibroblast growth factor. Nature 250, 741–742 (1974). https://doi.org/10.1038/250741a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing