Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of X-chromosome inactivation in mammals

Abstract

IT is now well established that in the somatic cells of mammals only a single X chromosome is active in coding for proteins, no matter how many are present1,2, but the mechanism and evolutionary origin of this phenomenon still remain unsolved problems. Cooper3 suggested that the random inactivation of X chromosomes derived from either parent in eutherian mammals had evolved from a more primitive inactivation of the paternally derived X chromosome as seen in marsupials, and a possible mechanism for this evolution has been put forward4. Lifschytz and Lindsley5 further suggested that the inactivation seen in somatic cells had evolved from inactivation of both sex chromosomes in male gametogenesis, a phenomenon that is general in gametes of the heterogametic sex of many species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lyon, M. F., Nature, 190, 372–373 (1961).

    Article  ADS  CAS  Google Scholar 

  2. Lyon, M. F., Biol. Rev., 47, 1–35 (1972).

    Article  CAS  Google Scholar 

  3. Cooper, D. W., Nature, 231, 292–294 (1971).

    Article  ADS  Google Scholar 

  4. Brown, S. W., and Chandra, H. S., Proc. natn. Acad. Sci. U.S.A., 70, 195–199 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Lifschytz, E., and Lindsley, D. L., Proc. natn. Acad. Sci. U.S.A., 69, 182–186 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Epstein, C. J., Science, 163, 1078 (1969).

    Article  ADS  CAS  Google Scholar 

  7. Epstein, C. J., Science, 175, 1467–1468 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Gartler, S. M., Liskay, R. M., Campbell, B. K., Sparkes, R., and Gant, N., Cell Differ., 1, 215–218 (1972).

    Article  CAS  Google Scholar 

  9. Hamerton, J. L., Nature, 219, 910–914 (1968).

    Article  ADS  CAS  Google Scholar 

  10. Lyon, M. F., and Hawker, S. G., Genet. Res., 21, 185–194 (1973).

    Article  CAS  Google Scholar 

  11. Cattanach, B. M., Pollard, C. E., and Hawkes, S. G., Cytogenetics, 10, 318–337 (1971).

    Article  CAS  Google Scholar 

  12. Lyon, M. F., in Reproductive Physiology and Genetics (edit. by Fuchs, F., and Coutinho, E. M.) (Plenum, New York, in the press).

  13. Welshons, W. J., and Russell, L. B., Proc. natn. Acad. Sci. U.S.A., 45 560–566 (1959).

    Article  ADS  CAS  Google Scholar 

  14. Ohno, S., Nature, 234, 134–137 (1971).

    Article  ADS  CAS  Google Scholar 

  15. Lyon, M. F., and Hawkes, S. G., Nature, 227, 1217–1219 (1970).

    Article  ADS  CAS  Google Scholar 

  16. Ohno, S., Sex Chromosomes and Sex-linked Genes (Springer, Berlin, 1967).

    Book  Google Scholar 

  17. Cattanach, B. M., and Moseley, H., Cytogenet. Cell Genet., 12, 264 (1973).

    Article  CAS  Google Scholar 

  18. Ducos, J., Marty, Y., Sanger, R., and Race, R. R., Lancet, ii, 219–220 (1971).

    Article  Google Scholar 

  19. Ferguson-Smith, M. A., J. med. Genet., 2, 93–156 (1965).

    Article  Google Scholar 

  20. Penrose, L. S., Lancet, i, 298–300 (1967).

    Article  Google Scholar 

  21. Nes, N., Forskning og forsok i Landbruket, 19, 393–440 (1968).

    Google Scholar 

  22. Weiss, G., Weick, R. F., Knobil, E., Wolman, S. R., and Gorstein, F., Folia Primat., 19, 24–27 (1973).

    Article  CAS  Google Scholar 

  23. Norby, D. E., Hegreberg, G. A., Thuline, H. C., and Findley, D., Cytogenet. Cell Genet. (in the press).

  24. Yong, H. S., Nature, 232, 484–485 (1971).

    Article  Google Scholar 

  25. Bianchi, N. O., and Contreras, J. R., Cytogenetics, 6, 306–313 (1967).

    Article  CAS  Google Scholar 

  26. Ohno, S., in Second International Conference on Congenital Malformations, 40–42 (International Medical Congress, New York, 1963).

    Google Scholar 

  27. McKusick, V. A., O. Rev. Biol., 37, 69–175 (1962).

    Article  CAS  Google Scholar 

  28. Race, R. R., and Sanger, R., Blood Groups in Man (Blackwell, Oxford, 1968).

    Google Scholar 

  29. McKusick, V. A., Mendelian Inheritance in Man (Johns Hopkins Press, Baltimore. 1971).

    Google Scholar 

  30. Mouse News Lett., 49, (1973).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LYON, M. Evolution of X-chromosome inactivation in mammals. Nature 250, 651–653 (1974). https://doi.org/10.1038/250651a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/250651a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing