Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tight binding of RNA polymerase to rDNA genes in E. coli

Abstract

THE synthesis of ribosomal RNA (rRNA) in exponentially growing bacteria accounts for approximately half of the total RNA synthesis, although the ribosomal DNA (rDNA) genes make up only 0.3–0.4% of the genome1. Electronmicroscopic observations2 and biochemical data3,4 suggest that the frequency of transcription initiation on these genes is much higher than on any other part of the bacterial chromosome. If the same enzyme is responsible for the transcription of all kinds of bacterial RNA, this difference in the initiation frequency might be due either to a specific regulatory factor or to the structure of the relevant interacting macromolecules themselves. If the latter were true, the DNA promoter sequence responsible for the initiation of transcription on rRNA genes should be more active than other promoters. This hypothesis is supported by the discovery of preferential in vitro rRNA synthesis with purified RNA polymerase in the absence of any external factor5–7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lazzarini, R. A., and Winslow, R. M., Cold Spring Harbor Symp. quant. Biol., 35, 383 (1970).

    Article  Google Scholar 

  2. Hamkalo, B. A., and Miller, Q. L., jun., A. Rev. Biochem., 42, 379 (1973).

    Article  CAS  Google Scholar 

  3. Pato, M. L., and von Meyerburg, K., Cold Spring Harbor Symp. quant. Biol., 35, 497 (1970).

    Article  CAS  Google Scholar 

  4. Doolittle, W. F., and Pace, N. R., Proc. natn. Acad. Sci., U.S.A., 68, 1786 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Haseltine, W. A., Nature, 235, 329 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Pettijohn, D. E., Nature new Biol., 235, 204 (1972).

    Article  CAS  Google Scholar 

  7. Hussay, C., Pero, J., Shorenstein, R. G., and Losick, R., Proc. natn. Acad. Sci., U.S.A., 69, 406 (1972).

    ADS  Google Scholar 

  8. Hinkle, D. C., and Chamberlin, M. J., J. molec. Biol., 70, 157 (1972).

    Article  CAS  Google Scholar 

  9. Nakano, E., and Sakaguchi, K., FEBS Lett., 14, 139 (1971).

    Article  CAS  Google Scholar 

  10. Chamberlin, M. J., and Ring, J., J. molec. Biol., 70, 221 (1972).

    Article  CAS  Google Scholar 

  11. Nakano, E., FEBS Lett., 22, 139 (1972).

    Article  CAS  Google Scholar 

  12. Iones, O. W., and Berg, P., J. molec. Biol., 22, 199 (1966).

    Article  Google Scholar 

  13. Willmund, R., Kneser, H., Molec. gen. Genet., 126, 165 (1973).

    Article  CAS  Google Scholar 

  14. Schäfer, R., Krämer, R., Zillig, W., and Cudny, H., Eur. J. Biochem., 40, 367 (1973).

    Article  Google Scholar 

  15. Khesin, R. B., Astaurova, O. B., Shemyakin, M. F., Komzolova, S. G., and Manyakov, S. G., Molec. Biol., 1, 617 (1967).

    Google Scholar 

  16. Novak, R. L., and Doty, P., J. biol. Chem., 243, 6068 (1968).

    CAS  PubMed  Google Scholar 

  17. Burgi, E., and Hershey, A. D., Biophys. J., 3, 309 (1963).

    Article  ADS  CAS  Google Scholar 

  18. Vogt, V. M., Eur. J. Biochem., 33, 192 (1973).

    Article  CAS  Google Scholar 

  19. Burgess, R. R., J. biol. Chem., 244, 6160 (1969).

    CAS  Google Scholar 

  20. Nüsslein, C., and Heyden, B., Biochem. biophys. Res. Commun., 47, 282 (1972).

    Article  Google Scholar 

  21. Gillespie, D., and Spiegelman, S., J. molec. Biol., 12, 829 (1965).

    Article  CAS  Google Scholar 

  22. Torriani, A., in Procedures in Nucleic Acid Research (edit. by Cantoni, G. L., and Davies, D. R.), 224 (Harper and Row, New York, 1966).

    Google Scholar 

  23. Stanley, W. M., jun., and Wahba, A. J., in Methods in Enzymology (edit. by Colowick, S. P., and Kaplan, N. O.), 524 (Academic Press, New York and London, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

UDVARDY, A., SUMEGI, J. & VENETIANER, P. Tight binding of RNA polymerase to rDNA genes in E. coli. Nature 249, 548–550 (1974). https://doi.org/10.1038/249548a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/249548a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing