Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stability of CO2 in the Martian Atmosphere and under Radiolysis

Abstract

THE atmosphere of Mars appears to be predominantly undissociated CO2 (refs. 1–3). It was possible by assuming very rapid transport downwards to explain the composition of the upper atmosphere, but a problem remained at lower altitudes. More recent determinations4,5 of the rate of O–CO recombination have, however, given a rate constant two orders of magnitude lower than that used in the calculations for 200 K, the Martian surface temperature. This creates a more severe problem. There are less CO and O2 than can be accounted for by a mechanism of photolysis and recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McElroy, M. B., and McConnell, J. C., J. Atmos. Sci., 28, 879 (1971).

    Article  ADS  CAS  Google Scholar 

  2. McElroy, M. B., and Hunten, D. M., J. Geophys. Res., 75, 1188 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Clark, I. D., J. Atmos. Sci., 28, 847 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Stuhl, F., and Niki, H., J. Chem. Phys., 55, 3943 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Slanger, T. G., Wood, B. J., and Black, G., J. Chem. Phys., 57, 233 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Slanger, T. G., and Black, G., J. Chem. Phys., 54, 1889 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Felder, W., Morrow, W., and Young, R. A., J. Geophys. Res., 75, 7311 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Anderson, A. R., and Dominey, D. A., Radiation Res. Rev., 1, 269 (1968).

    CAS  Google Scholar 

  9. Parkes, D. A., J. Chem. Soc., Faraday Trans., I, 68, 627 (1972).

    Article  CAS  Google Scholar 

  10. Parkes, D. A., Faraday Trans., I, 69, 198 (1973).

    Article  CAS  Google Scholar 

  11. Clay, P. G., Johnston, G. R. A., and Warman, J. M., Disc. Faraday Soc., 36, 47 (1963).

    Article  Google Scholar 

  12. Whitten, R. C., Popoff, I. G., and Sims, J. S., Planet. Space Sci., 19, 243 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Schildcrout, S. M., Collins, J. G., and Franklin, J. L., J. Chem. Phys., 52, 5767 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Simonaitis, R., and Heicklen, J., J. Chem. Phys., 56, 2004 (1972).

    Article  ADS  CAS  Google Scholar 

  15. Arin, L. M., and Warneck, P., J. Phys. Chem., 76 233 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PARKES, D. Stability of CO2 in the Martian Atmosphere and under Radiolysis. Nature 241, 110–111 (1973). https://doi.org/10.1038/241110a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/241110a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing