Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets For Therapy

The histone deacetylase inhibitor ITF2357 has anti-leukemic activity in vitro and in vivo and inhibits IL-6 and VEGF production by stromal cells

Abstract

We have investigated the activity of ITF2357, a novel hydroxamate histone deacetylase inhibitor, on multiple myeloma (MM) and acute myelogenous leukemia (AML) cells in vitro and in vivo. ITF2357 induced apoptosis in 8/9 MM and 6/7 AML cell lines, as well as 4/4 MM and 18/20 AML freshly isolated cases, with a mean IC50 of 0.2 μ M. ITF2357 activated the intrinsic apoptotic pathway, upregulated p21 and downmodulated Bcl-2 and Mcl-1. The drug induced hyperacetylation of histone H3, H4 and tubulin. When studied in more physiological conditions, ITF2357 was still strongly cytotoxic for the interleukin-6 (IL-6)-dependent MM cell line CMA-03, or for AML samples maximally stimulated by co-culture on mesenchymal stromal cells (MSCs), but not for the MSCs themselves. Interestingly, ITF2357 inhibited the production of IL-6, vascular endothelial growth factor (VEGF) and interferon-γ by MSCs by 80–95%. Finally, the drug significantly prolonged survival of severe combined immunodeficient mice inoculated with the AML-PS in vivo passaged cell line already at the 10 mg/kg oral dose. These data demonstrate that ITF2357 has potent anti-neoplastic activity in vitro and in vivo through direct induction of leukemic cell apoptosis. Furthermore, the drug inhibits production of growth and angiogenic factors by bone marrow stromal cells, in particular IL-6 and VEGF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB . Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003; 370: 737–749.

    Article  CAS  Google Scholar 

  2. Arney KL, Fisher AG . Epigenetic aspects of differentiation. J Cell Sci 2004; 117: 4355–4363.

    Article  CAS  Google Scholar 

  3. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Dis 2006; 5: 769–784.

    Article  CAS  Google Scholar 

  4. Dokmanovic M, Marks PA . Prospects: histone deacetylase inhibitors. J Cell Biochem 2005; 96: 293–304.

    Article  CAS  Google Scholar 

  5. Kelly WK, Marks PA . Drug insight: histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2005; 2: 150–157.

    Article  CAS  Google Scholar 

  6. Marks PA, Breslow R . Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 2007; 25: 84–90.

    Article  CAS  Google Scholar 

  7. O’Connor OA, Heaney ML, Schwartz L, Richardson S, Willim R, MacGregor-Cortelli B et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006; 24: 166–173.

    Article  Google Scholar 

  8. Steffen B, Muller-Tidow C, Schwable J, Berdel WE, Serve H . The molecular pathogenesis of acute myeloid leukemia. Crit Rev Oncol Hematol 2005; 56: 195–221.

    Article  Google Scholar 

  9. Minucci S, Pelicci PG . Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin Cell Dev Biol 1999; 10: 215–225.

    Article  CAS  Google Scholar 

  10. George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 2005; 105: 1768–1776.

    Article  CAS  Google Scholar 

  11. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 2005; 11: 71–76.

    Article  CAS  Google Scholar 

  12. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005; 11: 77–84.

    Article  CAS  Google Scholar 

  13. Weisberg E, Catley L, Kujawa J, Atadja P, Remiszewski S, Fuerst P et al. Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia 2004; 18: 1951–1963.

    Article  CAS  Google Scholar 

  14. Karagiannis TC, El-Osta A . Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 2007; 21: 61–65.

    Article  CAS  Google Scholar 

  15. Sirohi B, Powles R . Multiple myeloma. Lancet 2004; 363: 875–887.

    Article  Google Scholar 

  16. Podar K, Anderson KC . The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 2005; 105: 1383–1395.

    Article  CAS  Google Scholar 

  17. Yasui H, Hideshima T, Hamasaki M, Roccaro AM, Shiraishi N, Kumar S et al. SDX-101, the R-enantiomer of etodolac, induces cytotoxicity, overcomes drug resistance and enhances the activity of dexamethasone in multiple myeloma. Blood 2005; 106: 706–712.

    Article  CAS  Google Scholar 

  18. Yanamandra N, Colaco NM, Parquet NA, Buzzeo RW, Boulware D, Wright G et al. Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clin Cancer Res 2006; 12: 591–599.

    Article  CAS  Google Scholar 

  19. Corso A, Ferretti E, Lunghi M, Zappasodi P, Mangiacavalli S, De Amici M et al. Zoledronic acid down-regulates adhesion molecules of bone marrow stromal cells in multiple myeloma: a possible mechanism for its antitumor effect. Cancer 2005; 104: 118–125.

    Article  CAS  Google Scholar 

  20. Leoni F, Fossati G, Lewis EC, Lee JK, Porro G, Pagani P et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 2005; 11: 1–15.

    Article  CAS  Google Scholar 

  21. Armeanu S, Pathil A, Venturelli S, Mascagni P, Weiss TS, Gottlicher M et al. Apoptosis on hepatoma cells but not on primary hepatocytes by histone deacetylase inhibitors valproate and ITF2357. J Hepatol 2005; 42: 210–217.

    Article  CAS  Google Scholar 

  22. Pathil A, Armeanu S, Venturelli S, Mascagni P, Weiss TS, Gregor M et al. HDAC inhibitor treatment of hepatoma cells induces both TRAIL-independent apoptosis and restoration of sensitivity to TRAIL. Hepatology 2006; 43: 425–434.

    Article  CAS  Google Scholar 

  23. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA 2002; 99: 2995–3000.

    Article  CAS  Google Scholar 

  24. Carta S, Tassi S, Semino C, Fossati G, Mascagni P, Dinarello CA et al. Histone deacetylase inhibitors prevent exocytosis of interleukin-1beta-containing secretory lysosomes: role of microtubules. Blood 2006; 108: 1618–1626.

    Article  CAS  Google Scholar 

  25. Verdelli D, Mattioli M, Fabris S, Nobili L, Intini D, Guerneri S et al. Molecular and biological characterization of three novel interleukin-6-dependent human myeloma cell lines. Haematologica 2005; 90: 1541–1548.

    CAS  Google Scholar 

  26. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  Google Scholar 

  27. Golay J, Manganini M, Rambaldi A, Introna M . Effect of alemtuzumab on neoplastic B cells. Haematologica 2004; 89: 1476–1483.

    CAS  Google Scholar 

  28. Giavazzi R, Di Berardino C, Garofalo A, Motta T, Gobbi A, Scanziani E et al. Establishment of human acute myelogenous leukemia lines secreting interleukin-1 beta in SCID mice. Int J Cancer 1995; 61: 280–285.

    Article  CAS  Google Scholar 

  29. Golay J, Di Gaetano N, Amico D, Cittera E, Barbui AM, Giavazzi R et al. Gemtuzumab ozogamicin (Mylotarg) has therapeutic activity against CD33 acute lymphoblastic leukaemias in vitro and in vivo. Br J Haematol 2005; 128: 310–317.

    Article  CAS  Google Scholar 

  30. Guo F, Sigua C, Tao J, Bali P, George P, Li Y et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 2004; 64: 2580–2589.

    Article  CAS  Google Scholar 

  31. Maiso P, Carvajal-Vergara X, Ocio EM, Lopez-Perez R, Mateo G, Gutierrez N et al. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res 2006; 66: 5781–5789.

    Article  CAS  Google Scholar 

  32. Rosato RR, Grant S . Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 2005; 9: 809–924.

    Article  CAS  Google Scholar 

  33. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA . Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 2004; 101: 1241–1246.

    Article  CAS  Google Scholar 

  34. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005; 280: 26729–26734.

    Article  CAS  Google Scholar 

  35. Khan SB, Maududi T, Barton K, Ayers J, Alkan S . Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol 2004; 125: 156–161.

    Article  CAS  Google Scholar 

  36. Rosato RR, Almenara JA, Dai Y, Grant S . Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2003; 2: 1273–1284.

    CAS  Google Scholar 

  37. Lindemann RK, Newbold A, Whitecross KF, Cluse LA, Frew AJ, Ellis L et al. Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proc Natl Acad Sci USA 2007; 104: 8071–8076.

    Article  CAS  Google Scholar 

  38. Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 2006; 442: 96–99.

    Article  CAS  Google Scholar 

  39. Glaser KB, Li J, Pease LJ, Staver MJ, Marcotte PA, Guo J et al. Differential protein acetylation induced by novel histone deacetylase inhibitors. Biochem Biophys Res Commun 2004; 325: 683–690.

    Article  CAS  Google Scholar 

  40. Catley L, Weisberg E, Kiziltepe T, Tai YT, Hideshima T, Neri P et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006; 108: 3441–3449.

    Article  CAS  Google Scholar 

  41. Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005; 102: 8567–8572.

    Article  CAS  Google Scholar 

  42. Trudel S, Li ZH, Wei E, Wiesmann M, Chang H, Chen C et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 2005; 105: 2941–2948.

    Article  CAS  Google Scholar 

  43. Catley L, Weisberg E, Tai YT, Atadja P, Remiszewski S, Hideshima T et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003; 102: 2615–2622.

    Article  CAS  Google Scholar 

  44. Bisping G, Kropff M, Wenning D, Dreyer B, Bessonov S, Hilberg F et al. Targeting receptor kinases by a novel indolinone derivative in multiple myeloma: abrogation of stroma-derived interleukin-6 secretion and induction of apoptosis in cytogenetically defined subgroups. Blood 2006; 107: 2079–2089.

    Article  CAS  Google Scholar 

  45. Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

    Article  CAS  Google Scholar 

  46. Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM et al. Antigen presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-{gamma}. Blood 2006; 107: 4817–4824.

    Article  CAS  Google Scholar 

  47. Yasui H, Hideshima T, Richardson PG, Anderson KC . Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma. Br J Haematol 2006; 132: 385–397.

    CAS  Google Scholar 

  48. Einsiedel HG, Kawan L, Eckert C, Witt O, Fichtner I, Henze G et al. Histone deacetylase inhibitors have antitumor activity in two NOD/SCID mouse models of B-cell precursor childhood acute lymphoblastic leukemia. Leukemia 2006; 20: 1435–1436.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr T Otsuki (Kavasaki Medical School, Okajama, Japan) for his kind gift of the KMS11, KMS12, KMS18 and KMS20 lines, Dr A Carobbio for the statistical analyses, Dr E Galbiati and G Mascheroni for their technical contribution. This work was in part supported by the ‘Associazione italiana contro le Leucemie - Linfomi (AiL) – sezione.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Rambaldi.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golay, J., Cuppini, L., Leoni, F. et al. The histone deacetylase inhibitor ITF2357 has anti-leukemic activity in vitro and in vivo and inhibits IL-6 and VEGF production by stromal cells. Leukemia 21, 1892–1900 (2007). https://doi.org/10.1038/sj.leu.2404860

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404860

Keywords

This article is cited by

Search

Quick links