Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

HLXB9 activates IL6 in Hodgkin lymphoma cell lines and is regulated by PI3K signalling involving E2F3

Abstract

Multiple cytokines are secreted by Hodgkin lymphoma (HL) cells, notably interleukin-6 (IL6), which is believed to play a significant pathobiological role in this and certain other tumors. Previous work on prostate carcinoma cells has shown that IL6 expression is activated therein by the homeodomain protein GBX2, which we found to be absent in HL cells. Instead, we observed expression of a closely related gene, HLXB9, albeit restricted to HL cells coexpressing IL6. Treatment of HL cell lines with antisense-oligonucleotides directed against HLXB9, forced expression of recombinant HLXB9, and analysis of reporter gene constructs containing IL6 promoter sequences all confirmed the potential of HLXB9 to drive expression of IL6. Chromosomal rearrangements of the HLXB9 locus at 7q36 were not detected in HL cells unlike AML subsets expressing HLXB9. However, inhibition of certain signal transduction pathways revealed that the phosphatidylinositol 3 kinase (PI3K) pathway contributes to HLXB9 expression. AKT/phospho-AKT analysis revealed constitutively active PI3K signalling in HL cell lines. Downstream analysis of PI3K revealed that E2F3 may mediate activation of HLXB9. Taken together, our data show that the PI3K signalling pathway in HL cells is constitutively activated and promotes HLXB9 expression, probably via E2F3, thereby enhancing malignant expression of IL6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Drexler HG . The leukemia–Lymphoma Cell Line Factsbook. San Diego: Academic Press, 2000.

    Google Scholar 

  2. Vener C, Guffanti A, Pomati M, Colombi M, Alietti A, La Targia ML et al. Soluble cytokine levels correlate with the activity and clinical stage of Hodgkin's disease at diagnosis. Leuk Lymphoma 2000; 37: 333–339.

    Article  CAS  Google Scholar 

  3. Reynolds GM, Billingham LJ, Gray LJ, Flavell JR, Najafipour S, Crocker J et al. Interleukin 6 expression by Hodgkin/Reed–Sternberg cells is associated with the presence of ‘B’ symptoms and failure to achieve complete remission in patients with advanced Hodgkin's disease. Br J Haematol 2002; 118: 195–201.

    Article  CAS  Google Scholar 

  4. Cozen W, Gill PS, Ingles SA, Masood R, Martinez-Maza O, Cockburn MG et al. IL-6 levels and genotype are associated with risk of young adult Hodgkin lymphoma. Blood 2004; 103: 3216–3221.

    Article  CAS  Google Scholar 

  5. Hinz M, Loser P, Mathas S, Krappmann D, Dorken B, Scheidereit C . Constitutive NFκB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed–Sternberg cells. Blood 2001; 97: 2798–2807.

    Article  CAS  Google Scholar 

  6. Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J 2002; 21: 4104–4113.

    Article  CAS  Google Scholar 

  7. Ray A, Sassone-Corsi P, Sehgal PB . A multiple cytokine- and second messenger-responsive element in the enhancer of the human interleukin-6 gene: similarities with c-fos gene regulation. Mol Cell Biol 1989; 9: 5537–5547.

    Article  CAS  Google Scholar 

  8. Libermann TA, Baltimore D . Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10: 2327–2334.

    Article  CAS  Google Scholar 

  9. Eliopoulos AG, Stack M, Dawson CW, Kaye KM, Hodgkin L, Sihota S et al. Epstein–Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-kappaB pathway involving TNF receptor-associated factors. Oncogene 1997; 19: 2899–2916.

    Article  Google Scholar 

  10. Annunziata CM, Safiran YJ, Irving SG, Kasid UN, Cossman J . Hodgkin disease: pharmacologic intervention of the CD40-NF kappa B pathway by a protease inhibitor. Blood 2000; 96: 2841–2848.

    CAS  PubMed  Google Scholar 

  11. Diehl V, Stein H, Hummel M, Zollinger R, Connors JM . Hodgkin's lymphoma: biology and treatment strategies for primary, refractory, and relapsed disease. Hematology (Am Soc Hematol Educ Program) 2003, 225–247.

  12. Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood 2001; 98: 762–770.

    Article  CAS  Google Scholar 

  13. Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 2003; 102: 1019–1027.

    Article  CAS  Google Scholar 

  14. Tzankov A, Zimpfer A, Lugli A, Krugmann J, Went P, Schraml P et al. High-throughput tissue microarray analysis of G1-cyclin alterations in classical Hodgkin's lymphoma indicates overexpression of cyclin E1. J Pathol 2003; 199: 201–207.

    Article  CAS  Google Scholar 

  15. Raaphorst FM, van Kemenade FJ, Blokzijl T, Fieret E, Hamer KM, Satijn DP et al. Coexpression of BMI-1 and EZH2 polycomb group genes in Reed–Sternberg cells of Hodgkin's disease. Am J Pathol 2000; 157: 709–715.

    Article  CAS  Google Scholar 

  16. Dukers DF, van Galen JC, Giroth C, Jansen P, Sewalt RG, Otte AP et al. Unique polycomb gene expression pattern in Hodgkin's lymphoma and Hodgkin's lymphoma-derived cell lines. Am J Pathol 2004; 164: 873–881.

    Article  CAS  Google Scholar 

  17. Sanchez-Beato M, Sanchez E, Garcia JF, Perez-Rosado A, Montoya MC, Fraga M et al. Abnormal PcG protein expression in Hodgkin's lymphoma. Relation with 2A7E and NFkappaB transcription factors. J Pathol 2004; 204: 528–537.

    Article  CAS  Google Scholar 

  18. Bürglin T . A comprehensive classification of homeobox genes. In: Duboule (ed), Guidebook to the Homeobox Genes. Oxford: Oxford University Press, 1994.

    Google Scholar 

  19. van Oostveen J, Bijl J, Raaphorst F, Walboomers J, Meijer C . The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 1999; 13: 1675–1690.

    Article  CAS  Google Scholar 

  20. Owens BM, Hawley RG . HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 2002; 20: 364–379.

    Article  CAS  Google Scholar 

  21. Holland PW . Beyond the Hox: how widespread is homeobox gene clustering? J Anat 2001; 199: 13–23.

    Article  CAS  Google Scholar 

  22. Nagel S, Kaufmann M, Drexler HG, MacLeod RAF . The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 2003; 63: 5329–5334.

    CAS  PubMed  Google Scholar 

  23. MacLeod RAF, Nagel S, Kaufmann M, Janssen JW, Drexler HG . Activation of HOX11L2 by juxtaposition with 3′-BCL11B in an acute lymphoblastic leukemia cell line (HPB-ALL) with t(5;14)(q35;q32.2). Genes Chromosomes Cancer 2003; 37: 84–91.

    Article  CAS  Google Scholar 

  24. Krenacs L, Himmelmann AW, Quintanilla-Martinez L, Fest T, Riva A, Wellmann A et al. Transcription factor B-cell-specific activator protein (BSAP) is differentially expressed in B cells and in subsets of B-cell lymphomas. Blood 1998; 92: 1308–1316.

    CAS  PubMed  Google Scholar 

  25. Vult von Steyern F, Martinov V, Rabben I, Nja A, de Lapeyriere O, Lomo T . The homeodomain transcription factors Islet 1 and HB9 are expressed in adult alpha and gamma motoneurons identified by selective retrograde tracing. Eur J Neurosci 1999; 11: 2093–2102.

    Article  CAS  Google Scholar 

  26. Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH . Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 1999; 23: 71–75.

    Article  CAS  Google Scholar 

  27. Ross AJ, Ruiz-Perez V, Wang Y, Hagan DM, Scherer S, Lynch SA et al. A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nat Genet 1998; 20: 358–361.

    Article  CAS  Google Scholar 

  28. Beverloo HB, Panagopoulos I, Isaksson M, van Wering E, van Drunen E, de Klein A et al. Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res 2001; 61: 5374–5377.

    CAS  PubMed  Google Scholar 

  29. Nagel S, Kaufmann M, Scherr M, Drexler HG, MacLeod RAF . Activation of HLXB9 by juxtaposition with MYB via formation of t(6;7)(q23;q36) in an AML-M4 cell line (GDM-1). Genes Chromosomes Cancer 2005; 42: 170–178.

    Article  CAS  Google Scholar 

  30. Eder M, Battmer K, Kafert S, Stucki A, Ganser A, Hertenstein B . Monitoring of BCR-ABL expression using real-time RT-PCR in CML after bone marrow or peripheral blood stem cell transplantation. Leukemia 1999; 13: 1383–1389.

    Article  CAS  Google Scholar 

  31. Vinante F, Rigo A, Scupoli MT, Pizzolo G . CD30 triggering by agonistic antibodies regulates CXCR4 expression and CXCL12 chemotactic activity in the cell line L540. Blood 2002; 99: 52–60.

    Article  CAS  Google Scholar 

  32. Gao AC, Lou W, Isaacs JT . Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene. Clin Cancer Res 2000; 6: 493–497.

    CAS  PubMed  Google Scholar 

  33. Leutz A, Damm K, Sterneck E, Kowenz E, Ness S, Frank R et al. Molecular cloning of the chicken myelomonocytic growth factor (cMGF) reveals relationship to interleukin 6 and granulocyte colony stimulating factor. EMBO J 1989; 8: 175–181.

    Article  CAS  Google Scholar 

  34. Kowenz-Leutz E, Herr P, Niss K, Leutz A . The homeobox gene GBX2, a target of the myb oncogene, mediates autocrine growth and monocyte differentiation. Cell 1997; 91: 185–195.

    Article  CAS  Google Scholar 

  35. Lee SK, Jurata LW, Funahashi J, Ruiz EC, Pfaff SL . Analysis of embryonic motoneuron gene regulation: derepression of general activators function in concert with enhancer factors. Development 2004; 131: 3295–3306.

    Article  CAS  Google Scholar 

  36. Puthier D, Bataille R, Amiot M . IL-6 up-regulates mcl-1 in human myeloma cells through JAK/STAT rather than ras/MAP kinase pathway. Eur J Immunol 1999; 29: 3945–3950.

    Article  CAS  Google Scholar 

  37. Krajewski S, Bodrug S, Gascoyne R, Berean K, Krajewska M, Reed JC . Immunohistochemical analysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymph nodes. Am J Pathol 1994; 145: 515–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N . Differential signaling pathways are activated in the Epstein–Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 2004; 64: 5251–5260.

    Article  CAS  Google Scholar 

  39. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995; 270: 815–822.

    Article  CAS  Google Scholar 

  40. Lauder A, Castellanos A, Weston K . c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of T cells and is required for PKB-mediated protection from apoptosis. Mol Cell Biol 2001; 21: 5797–5805.

    Article  CAS  Google Scholar 

  41. Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A et al. Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 2004; 23: 1627–1630.

    Article  CAS  Google Scholar 

  42. Brennan P, Babbage JW, Thomas G, Cantrell D . p70(s6k) integrates phosphatidylinositol 3-kinase and rapamycin-regulated signals for E2F regulation in T lymphocytes. Mol Cell Biol 1999; 19: 4729–4738.

    Article  CAS  Google Scholar 

  43. Hallstrom TC, Nevins JR . Specificity in the activation and control of transcription factor E2F-dependent apoptosis. Proc Natl Acad Sci USA 2003; 100: 10848–10853.

    Article  CAS  Google Scholar 

  44. Gao N, Zhang Z, Jiang BH, Shi X . Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 2003; 310: 1124–1132.

    Article  CAS  Google Scholar 

  45. Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol 2000; 20: 3626–3632.

    Article  CAS  Google Scholar 

  46. Bracken AP, Ciro M, Cocito A, Helin K . E2F target genes: unraveling the biology. Trends Biochem Sci 2004; 29: 409–417.

    Article  CAS  Google Scholar 

  47. Garcia JF, Camacho FI, Morente M, Fraga M, Montalban C, Alvaro T et al. Hodgkin and Reed–Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 2003; 101: 681–689.

    Article  CAS  Google Scholar 

  48. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K . EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2003; 22: 5323–5335.

    Article  CAS  Google Scholar 

  49. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 2002; 13: 1977–2000.

    Article  CAS  Google Scholar 

  50. Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 1998; 12: 2120–2130.

    Article  CAS  Google Scholar 

  51. Garcia E, Marcos-Gutierrez C, del Mar Lorente M, Moreno JC, Vidal M . RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. EMBO J 1999; 18: 3404–3418.

    Article  CAS  Google Scholar 

  52. Schlisio S, Halperin T, Vidal M, Nevins JR . Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J 2002; 21: 5775–5786.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Samuel Pfaff from the Salk Institute, La Jolla, CA for HLXB9 cDNA. This work was supported by José Carreras Foundation, Germany (SP 04/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Nagel.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, S., Scherr, M., Quentmeier, H. et al. HLXB9 activates IL6 in Hodgkin lymphoma cell lines and is regulated by PI3K signalling involving E2F3. Leukemia 19, 841–846 (2005). https://doi.org/10.1038/sj.leu.2403716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403716

Keywords

This article is cited by

Search

Quick links