Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Myeloma

PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells

Abstract

IL-6 has been reported to play a central role in growth and survival of multiple myeloma (MM) cells. However, recently we have demonstrated that in the presence of bone marrow stromal cells, survival of MM cells becomes independent of the IL-6/gp130/STAT3 pathway questioning the singular role of IL-6 in MM. Therefore, it was the aim of this study to identify additional factors and signaling pathways that might contribute to the growth and survival of MM cells. We found that in addition to IL-6 a number of bone marrow derived cytokines such as LIF, VEGF, bFGF, MIP-1α, SDF-1α, IL-1β, SCF and IL-3 activate the MAPK pathway and induce proliferation of MM.1S and RPMI-8226 MM cells. In addition, these cytokines independently phosphorylate the forkhead family member FKHR via PI3-K/AKT and support survival of primary human MM cells. Inhibition of these pathways induces apoptosis in MM cell lines and primary MM cells. Thus, we provide evidence that in addition to IL-6 a number of different factors trigger important growth-promoting pathways to support the proliferation and survival of MM cells. Therefore, blocking such pathways, rather than blocking a single factor, might be a promising approach for the development of novel treatment strategies in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Caligaris-Cappio F, Bergui L, Gregoretti M, Gaidano G, Gaboli M, Schena M et al. Role of bone marrow stromal cells in growth of human multiple myeloma. Blood 1991; 77: 2688–2693.

    CAS  PubMed  Google Scholar 

  2. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC . Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates IL-6 secretion. Blood 1993; 82: 3712–3720.

    CAS  PubMed  Google Scholar 

  3. Klein B . Cytokine, cytokine receptors, transduction signals, and oncogenes in human multiple myeloma. Semin Hematol 1995; 32: 4–19.

    CAS  PubMed  Google Scholar 

  4. Kishimoto T, Akira S, Narazaki M, Taga T . Interleukin-6 family of cytokines and gp130. Blood 1995; 86: 1243.

    CAS  PubMed  Google Scholar 

  5. Kawano MM, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myeloma. Nature 1988; 332: 83–85.

    Article  CAS  PubMed  Google Scholar 

  6. Chauhan D, Uchiyama H, Urashima M, Yamamoto K, Anderson KC . Regulation of interleukin-6 in multiple myeloma and bone marrow stromal cells. Stem Cells 1995; 15: 35–39.

    Google Scholar 

  7. Hilbert DM, Kopf M, Mock BA, Kohler G, Rudikoff S . Interleukin-6 is essential for the in vivo development of B lineage neoplasms. J Exp Med 1995; 182: 243–248.

    Article  CAS  PubMed  Google Scholar 

  8. Bergui L, Schena M, Gaidano G, Riva M, Caligaris-Cappio F . Interleukin 3 and interleukin 6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. J Exp Med 1989; 170: 613–618.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, Jourdan M et al. Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 1994; 83: 3654.

    CAS  PubMed  Google Scholar 

  10. Daeipour M, Kumar G, Amaral MC, Nel AE . Recombinant IL-6 activates p42 and p44 mitogen-activated protein kinases in the IL-6 responsive B cell line, AF-10. J Immunol 1993; 150: 4743–4753.

    CAS  PubMed  Google Scholar 

  11. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al. Constitutive activation of STAT3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115.

    Article  CAS  PubMed  Google Scholar 

  12. Hsu JH, Shi Y, Hu L, Fisher M, Franke TF, Lichtenstein A . Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses. Oncogene 2002; 21: 1391–1400.

    Article  CAS  PubMed  Google Scholar 

  13. Tu Y, Gardner A, Lichtenstein A . The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 2000; 60: 6763–6770.

    CAS  PubMed  Google Scholar 

  14. Ogata A, Chauhan D, Urashima D, Teoh G, Treon SP, Anderson KC . Blockade of mitogen-activated protein kinase cascade signaling in interleukin-6 independent multiple myeloma cells. Clin Cancer Res 1997; 3: 1017–1022.

    CAS  PubMed  Google Scholar 

  15. van Zaanen HC, Lokhorst HM, Aarden LA, Rensink HJ, Warnaar SO, van der Lelie J et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol 1998; 102: 783–790.

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee M, Honemann D, Lentzsch S, Bommert K, Sers C, Herrmann P et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 2002; 100: 3311–3318.

    Article  CAS  PubMed  Google Scholar 

  17. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98: 428–435.

    Article  CAS  PubMed  Google Scholar 

  18. Sezer O, Jakob C, Eucker J, Niemoller K, Gatz F, Wernecke K et al. Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 2001; 66: 83–88.

    Article  CAS  PubMed  Google Scholar 

  19. Witzig TE, Kimlinger T, Stenson M, Therneau T . Syndecan-1 expression on malignant cells from the blood and marrow of patients with plasma cell proliferative disorders and B-cell chronic lymphocytic leukemia. Leuk Lymphoma 1998; 31: 167–175.

    Article  CAS  PubMed  Google Scholar 

  20. Otsuki T, Yamada O, Yata K, Sakaguchi H, Kurebayashi J, Nakazawa N et al. Expression of fibroblast growth factor and FGF-receptor family genes in human myeloma cells, including lines possessing t(4;14)(q16.3;q32. 3) and FGFR3 translocation. Int J Oncol 1999; 15: 1205–1212.

    CAS  PubMed  Google Scholar 

  21. Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY . Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 2003; 101: 3568–3573.

    Article  CAS  PubMed  Google Scholar 

  22. Sanz-Rodriguez F, Hidalgo A, Teixido J . Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin- mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.

    Article  CAS  PubMed  Google Scholar 

  23. Durig J, Schmucker U, Duhrsen U . Differential expression of chemokine receptors in B cell malignancies. Leukemia 2001; 15: 752–756.

    Article  CAS  PubMed  Google Scholar 

  24. Cozzolino F, Torcia M, Aldinucci D, Rubartelli A, Miliani A, Shaw AR et al. Production of interleukin-1 by bone marrow myeloma cells: its role in the pathogenesis of lytic bone lesions. Blood 1989; 74: 380–387.

    CAS  PubMed  Google Scholar 

  25. Donovan KA, Lacy MQ, Gertz MA, Lust JA . IL-1beta expression in IgM monoclonal gammopathy and its relationship to multiple myeloma. Leukemia 2002; 16: 382–385.

    Article  CAS  PubMed  Google Scholar 

  26. Goto H, Shimazaki C, Ashihara E, Ohkawa K, Oku N, Inaba T et al. Effects of interleukin-3 and interleukin-6 on peripheral blood cells from multiple myeloma patients and their clinical significance. Acta Haematol 1992; 88: 129–135.

    Article  CAS  PubMed  Google Scholar 

  27. Wierzbowska A, Urbanska-Rys H, Robak T . Circulating IL-6-type cytokines and sIL-6R in patients with multiple myeloma. Br J Haematol 1999; 105: 412–419.

    Article  CAS  PubMed  Google Scholar 

  28. Juge-Morineau N, Francois S, Puthier D, Godard A, Bataille R, Amiot M . The gp 130 family cytokines IL-6, LIF and OSM but not IL-11 can reverse the anti-proliferative effect of dexamethasone on human myeloma cells. Br J Haematol 1995; 90: 707–710.

    Article  CAS  PubMed  Google Scholar 

  29. Honemann D, Chatterjee M, Savino R, Bommert K, Burger R, Gramatzki M et al. The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer 2001; 93: 674–680.

    Article  CAS  PubMed  Google Scholar 

  30. Nishimoto N, Ogata A, Shima Y, Tani Y, Ogawa H, Nakagawa M et al. Oncostatin M, leukemia inhibitory factor, and interleukin 6 induce the proliferation of human plasmacytoma cells via the common signal transducer, gp130. J Exp Med 1994; 179: 1343–1347.

    Article  CAS  PubMed  Google Scholar 

  31. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS . Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 1997; 17: 4406–4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki J, Kaziro Y, Koide H . An activated mutant of R-Ras inhibits cell death caused by cytokine deprivation in BaF3 cells in the presence of IGF-I. Oncogene 1997; 15: 1689–1697.

    Article  CAS  PubMed  Google Scholar 

  33. Choi SJ, Oba Y, Gazitt Y, Alsina M, Cruz J, Anderson J et al. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest 2001; 108: 1833–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S . Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 2001; 98: 3527–3533.

    Article  CAS  PubMed  Google Scholar 

  35. Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Gupta D et al. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther 2002; 1: 539–544.

    Article  CAS  PubMed  Google Scholar 

  36. Lemoli RM, Fortuna A . C-kit ligand (SCF) in human multiple myeloma cells. Leuk Lymphoma 1996; 20: 457–464.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD, Choi SJ . IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 2003; 103: 2308–2315.

    Article  PubMed  Google Scholar 

  38. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374 (Part 1): 1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ge NL, Rudikoff S . Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 2000; 96: 2856–2861.

    CAS  PubMed  Google Scholar 

  40. Gu ZJ, Costes V, Lu ZY, Zhang XG, Pitard V, Moreau JF et al. Klein, interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop. Blood 1996; 88: 3972–3986.

    CAS  PubMed  Google Scholar 

  41. Hjorth-Hansen H, Waage A, Borset M . Interleukin-15 blocks apoptosis and induces proliferation of the human myeloma cell line OH-2 and freshly isolated myeloma cells. Br J Haematol 1999; 106: 28–34.

    Article  CAS  PubMed  Google Scholar 

  42. Brenne AT, Baade Ro T, Waage A, Sundan A, Borset M, Hjorth-Hansen H . Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 2002; 99: 3756–3762.

    Article  CAS  PubMed  Google Scholar 

  43. Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A . Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 1996; 88: 3998–4004.

    CAS  PubMed  Google Scholar 

  44. Hideshima T, Nakamura N, Chauhan D, Anderson KC . Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001; 20: 5991–6000.

    Article  CAS  PubMed  Google Scholar 

  45. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  46. Medema RH, Kops GJ, Bos JL, Burgering BM . AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000; 404: 782–787.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Klinische Forschergruppe, Grant No. KFO 105/1) and the Wilhelm-Sander Stiftung (Grant No. 2002.013.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Bargou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lentzsch, S., Chatterjee, M., Gries, M. et al. PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia 18, 1883–1890 (2004). https://doi.org/10.1038/sj.leu.2403486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403486

This article is cited by

Search

Quick links