Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Role of curcumin and the inhibition of NF-κB in the onset of chemotherapy-induced mucosal barrier injury

Abstract

The inhibition of nuclear factor kappa B (NF-κB) by, for instance, curcumin is becoming an important new approach in combination with chemotherapy or irradiation for the treatment of a variety of cancers including haematological malignancies. A dose-limiting side effect of anticancer therapy in the gastrointestinal tract is mucosal barrier injury. It is hypothesised that mucosal barrier injury is initiated and amplified by proinflammatory-and NF-κB-regulated mediators. Therefore, the effect of NF-κB inhibition was studied in the onset of mucosal barrier injury. In response to cytostatic drug treatment (arabinoside cytosine (Ara-C) and methotrexate (MTX)), NF-κB was activated in intestinal epithelial cells (IEC-6) resulting in an NF-κB-related induction of tumour necrosis factor alpha and monocyte chemoattractant protein-1. NF-κB inhibition increased the susceptibility of IEC-6 cells to Ara-C as well as MTX-induced cell death when obtained by the addition of caffeic acid phenethyl ester (CAPE), but not using curcumin. In an animal model for MTX-induced mucosal barrier injury, the induction of NF-κB-related cytokines and chemokines was detected upon treatment with MTX. Despite increased susceptibility shown in vitro, the inhibition of NF-κB resulted in a partial amelioration of villous atrophy normally seen in the small intestine upon MTX treatment. These results show that the inhibition of NF-κB does not increase intestinal side effects of the anticancer treatment, suggesting a safe use of curcumin and CAPE in combination with anticancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chen F, Castranova V, Shi X . New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol 2001; 159: 387–397.

    Article  CAS  Google Scholar 

  2. Li JD, Feng W, Gallup M, Kim JH, Gum J, Kim Y et al. Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci USA 1998; 95: 5718–5723.

    Article  CAS  Google Scholar 

  3. Bender K, Gottlicher M, Whiteside S, Rahmsdorf HJ, Herrlich P . Sequential DNA damage-independent and -dependent activation of NF-kappaB by UV. EMBO J 1998; 17: 5170–5181.

    Article  CAS  Google Scholar 

  4. Ghosh S, May MJ, Kopp EB . NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225–260.

    Article  CAS  Google Scholar 

  5. Ghosh S, Karin M . Missing pieces in the NF-kappaB puzzle. Cell 2002; 109 (Suppl): S81–S96.

    Article  CAS  Google Scholar 

  6. Finco TS, Baldwin AS . Mechanistic aspects of NF-kappa B regulation: the emerging role of phosphorylation and proteolysis. Immunity 1995; 3: 263–272.

    Article  CAS  Google Scholar 

  7. Ueda A, Ishigatsubo Y, Okubo T, Yoshimura T . Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J Biol Chem 1997; 272: 31092–31099.

    Article  CAS  Google Scholar 

  8. Collart MA, Baeuerle P, Vassalli P . Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol 1990; 10: 1498–1506.

    Article  CAS  Google Scholar 

  9. Baldassarre F, Mallardo M, Mezza E, Scala G, Quinto I . Regulation of NF-kappa B through the nuclear processing of p105 (NF-kappa B1) in Epstein–Barr virus-immortalized B cell lines. J Biol Chem 1995; 270: 31244–31248.

    Article  CAS  Google Scholar 

  10. Read MA, Whitley MZ, Williams AJ, Collins T . NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation. J Exp Med 1994; 179: 503–512.

    Article  CAS  Google Scholar 

  11. Schmid RM, Adler G . NF-kappaB/rel/IkappaB: implications in gastrointestinal diseases. Gastroenterology 2000; 118: 1208–1228.

    Article  CAS  Google Scholar 

  12. Chen F, Castranova V, Shi X, Demers LM . New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 1999; 45: 7–17.

    CAS  PubMed  Google Scholar 

  13. Barnes PJ, Karin M . Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–1071.

    Article  CAS  Google Scholar 

  14. Wulczyn FG, Krappmann D, Scheidereit C . The NF-kappa B/Rel and I kappa B gene families: mediators of immune response and inflammation. J Mol Med 1996; 74: 749–769.

    Article  CAS  Google Scholar 

  15. Sonis ST . Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol 1998; 34: 39–43.

    Article  CAS  Google Scholar 

  16. Blijlevens NMA, Donnelly JP, De Pauw BE . Mucosal barrier injury: biology, pathology, clinical counterparts and consequences of intensive treatment for haematological malignancy: an overview. Bone Marrow Transplant 2000; 25: 1269–1278.

    Article  CAS  Google Scholar 

  17. Li N, Karin M . Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci USA 1998; 95: 13012–13017.

    Article  CAS  Google Scholar 

  18. Granville DJ, Carthy CM, Jiang H, Levy JG, McManus BM, Matroule JY et al. Nuclear factor-kappaB activation by the photochemotherapeutic agent verteporfin. Blood 2000; 95: 256–262.

    CAS  PubMed  Google Scholar 

  19. Rothwarf DM, Karin M . The NF-kappaB activation pathway: a paradigm in information transfer from membrane to nucleus. Sci Signal Trans 1999; 5: 1–16.

    Google Scholar 

  20. Karin M, Lin A . NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3: 221–227.

    Article  CAS  Google Scholar 

  21. Hour TC, Chen J, Huang CY, Guan JY, Lu SH, Pu YS . Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21WAF1/CIP1 and C/EBPbeta expressions and suppressing NF-kappaB activation. Prostate 2002; 51: 211–218.

    Article  CAS  Google Scholar 

  22. Chuang SE, Yeh PY, Lu YS, Lai GM, Liao CM, Gao M et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 2002; 63: 1709–1716.

    Article  CAS  Google Scholar 

  23. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ . Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001; 20: 4188–4197.

    Article  CAS  Google Scholar 

  24. Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ . Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 2000; 60: 5334–5339.

    CAS  PubMed  Google Scholar 

  25. Rao CV, Rivenson A, Simi B, Reddy BS . Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 1995; 55: 259–266.

    CAS  PubMed  Google Scholar 

  26. Joe B, Lokesh BR . Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1994; 1224: 255–263.

    Article  CAS  Google Scholar 

  27. Huang TS, Lee SC, Lin JK . Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Proc Natl Acad Sci USA 1991; 88: 5292–5296.

    Article  CAS  Google Scholar 

  28. Conney AH, Lysz T, Ferraro T, Abidi TF, Manchand PS, Laskin JD et al. Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul 1991; 31: 385–396.

    Article  CAS  Google Scholar 

  29. Huang MT, Lysz T, Ferraro T, Abidi TF, Laskin JD, Conney AH . Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 1991; 51: 813–819.

    CAS  PubMed  Google Scholar 

  30. Plummer SM, Holloway KA, Manson MM, Munks RJ, Kaptein A, Farrow S et al. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 1999; 18: 6013–6020.

    Article  CAS  Google Scholar 

  31. Natarajan K, Singh S, Burke Jr TR, Grunberger D, Aggarwal BB . Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 1996; 93: 9090–9095.

    Article  CAS  Google Scholar 

  32. Laranjinha J, Vieira O, Madeira V, Almeida L . Two related phenolic antioxidants with opposite effects on vitamin E content in low density lipoproteins oxidized by ferrylmyoglobin: consumption vs regeneration. Arch Biochem Biophys 1995; 323: 373–381.

    Article  CAS  Google Scholar 

  33. Jaiswal AK, Venugopal R, Mucha J, Carothers AM, Grunberger D . Caffeic acid phenethyl ester stimulates human antioxidant response element-mediated expression of the NAD(P)H:quinone oxidoreductase (NQO1) gene. Cancer Res 1997; 57: 440–446.

    CAS  PubMed  Google Scholar 

  34. Zheng ZS, Xue GZ, Grunberger D, Prystowsky JH . Caffeic acid phenethyl ester inhibits proliferation of human keratinocytes and interferes with the EGF regulation of ornithine decarboxylase. Oncol Res 1995; 7: 445–452.

    CAS  PubMed  Google Scholar 

  35. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S . Rel/NF-kappa B/1 kappa B family: initimate tales of association and dissociation. Genes Dev 1995; 9: 2723–2735.

    Article  CAS  Google Scholar 

  36. Fraker PJ, King LE, Lill-Elghanian D, Telford WG . Quantification of apoptotic events in pure and heterogeneous populations of cells using the flow cytometer. Methods Cell Biol 1995; 46: 57–76.

    Article  CAS  Google Scholar 

  37. United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR). Guidelines for the Welfare of Animals in Experimental Neoplasia (Second Edition). Br J Cancer 1998; 77: 1–10.

  38. Howarth GS, Francis GL, Cool JC, Xu X, Byard RW, Read LC . Milk growth factors enriched from cheese whey ameliorate intestinal damage by methotrexate when administered orally to rats. J Nutr 1996; 126: 2519–2530.

    Article  CAS  Google Scholar 

  39. Verburg M, Renes IB, Meijer HP, Taminiau JA, Buller HA, Einerhand AW et al. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats. Am J Physiol Gastrointest Liver Physiol 2000; 279: G1037–47.

    Article  CAS  Google Scholar 

  40. Doostzadeh-Cizeron J, Yin S, Goodrich DW . Apoptosis induced by the nuclear death domain protein p84N5 is associated with caspase-6 and NF-kappa B activation. J Biol Chem 2000; 275: 25336–25341.

    Article  CAS  Google Scholar 

  41. Majumdar S, Aggarwal BB . Methotrexate suppresses NF-kappaB activation through inhibition of IkappaBalpha phosphorylation and degradation. J Immunol 2001; 167: 2911–2920.

    Article  CAS  Google Scholar 

  42. Singh S, Aggarwal BB . Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J Biol Chem 1995; 270: 24995–25000.

    Article  CAS  Google Scholar 

  43. Manna SK, Sah NK, Newman RA, Cisneros A, Aggarwal BB . Oleandrin suppresses activation of nuclear transcription factor-kappaB, activator protein-1, and c-Jun NH2-terminal kinase. Cancer Res 2000; 60: 3838–3847.

    CAS  PubMed  Google Scholar 

  44. Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB . Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol 1999; 163: 6800–6809.

    CAS  PubMed  Google Scholar 

  45. Egan LJ, Mays DC, Huntoon CJ, Bell MP, Pike MG, Sandborn WJ et al. Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J Biol Chem 1999; 274: 26448–26453.

    Article  CAS  Google Scholar 

  46. Sugimoto K, Hanai H, Tozawa K, Aoshi T, Uchijima M, Nagata T et al. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 2002; 123: 1912–1922.

    Article  CAS  Google Scholar 

  47. Ma MH, Yang HH, Parker K, Manyak S, Friedman JM, Altamirano C et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 2003; 9: 1136–1144.

    CAS  PubMed  Google Scholar 

  48. Elliott PJ, Zollner TM, Boehncke WH . Proteasome inhibition: a new anti-inflammatory strategy. J Mol Med 2003; 81: 235–245.

    Article  CAS  Google Scholar 

  49. Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 1999; 59: 597–601.

    CAS  PubMed  Google Scholar 

  50. Mahmoud NN, Carothers AM, Grunberger D, Bilinski RT, Churchill MR, Martucci C et al. Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis 2000; 21: 921–927.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all biotechnicians of the small animal facility in Wageningen for housing and assistance with the performance of the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M'Rabet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van't Land, B., Blijlevens, N., Marteijn, J. et al. Role of curcumin and the inhibition of NF-κB in the onset of chemotherapy-induced mucosal barrier injury. Leukemia 18, 276–284 (2004). https://doi.org/10.1038/sj.leu.2403233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403233

Keywords

This article is cited by

Search

Quick links