Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting immunogenic cell stress and death for cancer therapy

Abstract

Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD — either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions — are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual differences between immunogenic and non-immunogenic cell death.
Fig. 2: Core mechanisms of immunogenic cell stress and death.
Fig. 3: Potential pipeline for preclinical development of novel ICD-relevant drugs.

Similar content being viewed by others

References

  1. López-Otín, C. & Kroemer, G. Hallmarks of health. Cell 184, 33–63 (2021).

    Article  PubMed  Google Scholar 

  2. Mehrotra, P. & Ravichandran, K. S. Drugging the efferocytosis process: concepts and opportunities. Nat. Rev. Drug Discov. 21, 601–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398–414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Björkström, N. K., Strunz, B. & Ljunggren, H. G. Natural killer cells in antiviral immunity. Nat. Rev. Immunol. 22, 112–123 (2022).

    Article  PubMed  Google Scholar 

  6. Kyrysyuk, O. & Wucherpfennig, K. W. Designing cancer immunotherapies that engage T cells and NK cells. Annu. Rev. Immunol. 41, 17–38 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Woodland, D. L. & Kohlmeier, J. E. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol. 9, 153–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, R., Ishak, C. A. & De Carvalho, D. D. Endogenous retroelements and the viral mimicry response in cancer therapy and cellular homeostasis. Cancer Discov. 11, 2707–2725 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

    Article  PubMed  Google Scholar 

  12. McLaughlin, M. et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat. Rev. Cancer 20, 203–217 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Petroni, G., Buqué, A., Coussens, L. M. & Galluzzi, L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat. Rev. Drug Discov. 21, 440–462 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Cytlak, U. M. et al. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat. Rev. Immunol. 22, 124–138 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Voorwerk, L. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat. Med. 25, 920–928 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Campbell, M. T. et al. Pilot study of tremelimumab with and without cryoablation in patients with metastatic renal cell carcinoma. Nat. Commun. 12, 6375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Røssevold, A. H. et al. Atezolizumab plus anthracycline-based chemotherapy in metastatic triple-negative breast cancer: the randomized, double-blind phase 2b ALICE trial. Nat. Med. 28, 2573–2583 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thibaudin, M. et al. First-line durvalumab and tremelimumab with chemotherapy in RAS-mutated metastatic colorectal cancer: a phase 1b/2 trial. Nat. Med. 29, 2087–2098 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kroemer, G., Chan, T. A., Eggermont, A. M. M. & Galluzzi, L. Immunosurveillance in clinical cancer management. CA Cancer J. Clin. https://doi.org/10.3322/caac.21818 (2023).

    Article  PubMed  Google Scholar 

  21. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Zindel, J. & Kubes, P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu. Rev. Pathol. 15, 493–518 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

    Article  PubMed  Google Scholar 

  26. Lucca, L. E. & Dominguez-Villar, M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat. Rev. Immunol. 20, 680–693 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Vitale, I. et al. Apoptotic cell death in disease — current understanding of the NCCD 2023. Cell Death Differ. 30, 1097–1154 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Conrad, M., Angeli, J. P., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edinger, A. L. & Thompson, C. B. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wiernicki, B. et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat. Commun. 13, 3676 (2022). This article demonstrates that ferroptosis is not always immunogenic per se and actively inhibits the immunogenicity of apoptotic cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Kepp, O. et al. ATP and cancer immunosurveillance. EMBO J. 40, e108130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fucikova, J., Spisek, R., Kroemer, G. & Galluzzi, L. Calreticulin and cancer. Cell Res. 31, 5–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chekeni, F. B. et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Nicholas, R. A. Identification of the P2Y(12) receptor: a novel member of the P2Y family of receptors activated by extracellular nucleotides. Mol. Pharmacol. 60, 416–420 (2001).

    CAS  PubMed  Google Scholar 

  43. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Gardai, S. J. et al. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115, 13–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sen Santara, S. et al. The NK cell receptor NKp46 recognizes ecto-calreticulin on ER-stressed cells. Nature 616, 348–356 (2023). This provides an elegant demonstration that besides mediating pro-phagocytic effects, CALR can directly bind to NKp46 on the surface of NK cells to promote their cytotoxicity.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Minute, L. et al. Cellular cytotoxicity is a form of immunogenic cell death. J. Immunother. Cancer 8, e000325 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jaime-Sanchez, P. et al. Cell death induced by cytotoxic CD8+ T cells is immunogenic and primes caspase-3-dependent spread immunity against endogenous tumor antigens. J. Immunother. Cancer 8, e000528 (2020). With Minute et al. (ref. 47), these articles show that the death of cancer cells as mediated by CD8+ CTLs is a bona fide instance of ICD.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, e00099-20 (2020).

    Article  Google Scholar 

  50. Lines, C. L., McGrath, M. J., Dorwart, T. & Conn, C. S. The integrated stress response in cancer progression: a force for plasticity and resistance. Front. Oncol. 13, 1206561 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Humeau, J. et al. Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress. EMBO Mol. Med. 12, e11622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Garg, A. D. et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 31, 1062–1079 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giglio, P. et al. PKR and GCN2 stress kinases promote an ER stress-independent eIF2α phosphorylation responsible for calreticulin exposure in melanoma cells. Oncoimmunology 7, e1466765 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Humeau, J. et al. Phosphorylation of eukaryotic initiation factor-2α (eIF2α) in autophagy. Cell Death Dis. 11, 433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Z. et al. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J. Clin. Invest. 129, 4850–4862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yatim, N. et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zi, M. et al. Improved antitumor immunity of chemotherapy in OSCC treatment by gasdermin-E mediated pyroptosis. Apoptosis 28, 348–361 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Sarti Kinker, G. & da Silva Medina, T. Tertiary lymphoid structures as hubs of antitumour immunity. Nat. Rev. Cancer 23, 803 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). This paper documents the importance of proficient autophagic responses in cancer cells to support optimal ICD-associated ATP release.

    Article  CAS  PubMed  Google Scholar 

  63. Spisek, R. et al. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109, 4839–4845 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gulla, A. et al. Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation. Blood Cancer Discov. 2, 468–483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Montes de Oca, R. et al. Belantamab mafodotin (GSK2857916) drives immunogenic cell death and immune-mediated antitumor responses in vivo. Mol. Cancer Ther. 20, 1941–1955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, P. et al. Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat. Commun. 10, 1486 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Scirocchi, F. et al. Immunogenic cell death and immunomodulatory effects of cabozantinib. Front. Oncol. 11, 755433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Choueiri, T. K. et al. Cabozantinib plus nivolumab and Ipilimumab in renal-cell carcinoma. N. Engl. J. Med. 388, 1767–1778 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spigel, D. R. et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation-positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol. 13, 682–688 (2018).

    Article  PubMed  Google Scholar 

  70. Patel, S. P. et al. Phase Ib study of crizotinib plus pembrolizumab in patients with previously untreated advanced non-small cell lung cancer with ALK translocation. Oncologist 25, 562-e1012 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Xu, W. et al. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol. Rev. 321, 181–198 (2023).

    Article  PubMed  Google Scholar 

  72. Zhang, J. et al. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front. Immunol. 14, 1230893 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shalhout, S. Z., Miller, D. M., Emerick, K. S. & Kaufman, H. L. Therapy with oncolytic viruses: progress and challenges. Nat. Rev. Clin. Oncol. 20, 160–177 (2023).

    Article  PubMed  Google Scholar 

  74. Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Poh, A. First oncolytic viral therapy for melanoma. Cancer Discov. 6, 6 (2016).

    Article  PubMed  Google Scholar 

  76. He, B., Gross, M. & Roizman, B. The γ134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl Acad. Sci. USA 94, 843–848 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grigg, C. et al. Talimogene laherparepvec (T-VEC) for the treatment of melanoma and other cancers. Semin. Oncol. 43, 638–646 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Palanivelu, L., Liu, C. H. & Lin, L. T. Immunogenic cell death: the cornerstone of oncolytic viro-immunotherapy. Front. Immunol. 13, 1038226 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Pol, J. et al. Trial watch — oncolytic viruses and cancer therapy. Oncoimmunology 5, e1117740 (2016).

    Article  PubMed  Google Scholar 

  80. Vitale, I. et al. Targeting cancer heterogeneity with immune responses driven by oncolytic peptides. Trends Cancer 7, 557–572 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Zhou, H. et al. The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis. 7, e2134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yamazaki, T. et al. The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA4 checkpoint blockade. Cell Death Differ. 23, 1004–1015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamazaki, T. et al. LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells. Oncoimmunology 10, 1962592 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Oslo Børs. Lytix Biopharma’s licensing partner Verrica Pharmaceuticals Inc. reports interim phase II data with LTX-315. News Web. https://newsweb.oslobors.no/message/596578 (2023).

  85. Rodriguez-Ruiz, M. E., Vitale, I., Harrington, K. J., Melero, I. & Galluzzi, L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat. Immunol. 21, 120–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Kepp, O., Marabelle, A., Zitvogel, L. & Kroemer, G. Oncolysis without viruses – inducing systemic anticancer immune responses with local therapies. Nat. Rev. Clin. Oncol. 17, 49–64 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Fucikova, J. et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int. J. Cancer 135, 1165–1177 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Yu, Z. et al. Treatment of osteosarcoma with microwave thermal ablation to induce immunogenic cell death. Oncotarget 5, 6526–6539 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Zhou, Q. et al. Sugemalimab versus placebo after concurrent or sequential chemoradiotherapy in patients with locally advanced, unresectable, stage III non-small-cell lung cancer in China (GEMSTONE-301): interim results of a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 23, 209–219 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Kelly, R. J. et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N. Engl. J. Med. 384, 1191–1203 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Lim, M. et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 24, 1935–1949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Omuro, A. et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial. Neuro Oncol. 25, 123–134 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, N. Y. et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 22, 450–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Galluzzi, L., Aryankalayil, M. J., Coleman, C. N. & Formenti, S. C. Emerging evidence for adapting radiotherapy to immunotherapy. Nat. Rev. Clin. Oncol. 20, 543–557 (2023).

    Article  PubMed  Google Scholar 

  96. Tatsuno, K. et al. Extracorporeal photochemotherapy induces bona fide immunogenic cell death. Cell Death Dis. 10, 578 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ventura, A. et al. Extracorporeal photochemotherapy drives monocyte-to-dendritic cell maturation to induce anticancer immunity. Cancer Res. 78, 4045–4058 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  PubMed  Google Scholar 

  99. Wei, B. M. et al. Extracorporeal photochemotherapy: mechanistic insights driving recent advances and future directions. Yale J. Biol. Med. 93, 145–159 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, A. et al. The effects of 5-aminolevulinic acid photodynamic therapy on the local immune response of women with cervical intraepithelial neoplasia grade 2. Front. Immunol. 14, 1211114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsai, Y. C. et al. Boost of innate immunity cytokines as biomarkers of response to extracorporeal photopheresis in patients with leukaemic cutaneous T-cell lymphoma. Br. J. Dermatol. 189, 603–611 (2023).

    Article  PubMed  Google Scholar 

  102. Menger, L. et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 4, 143ra199 (2012).

    Article  Google Scholar 

  103. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hayashi, K. et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat. Commun. 11, 6299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lévesque, S. et al. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology 8, e1657375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Castoldi, F. et al. Autophagy-mediated metabolic effects of aspirin. Cell Death Discov. 6, 129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheng, J. T. et al. Novel transcription regulatory sequences and factors of the immune evasion protein ICP47 (US12) of herpes simplex viruses. Virol. J. 17, 101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Keckler, M. S. Dodging the CTL response: viral evasion of Fas and granzyme induced apoptosis. Front. Biosci. 12, 725–732 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Franz, S. et al. Mumps virus SH protein inhibits NF-κB activation by interacting with tumor necrosis factor receptor 1, interleukin-1 receptor 1, and toll-like receptor 3 complexes. J. Virol. 91, e01037-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Solimini, N. L., Luo, J. & Elledge, S. J. Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130, 986–988 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Nagel, R., Semenova, E. A. & Berns, A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep. 17, 1516–1531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, M. & Attardi, L. D. A balancing act: p53 activity from tumor suppression to pathology and therapeutic implications. Annu. Rev. Pathol. 17, 205–226 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Hadian, K. & Stockwell, B. R. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat. Rev. Drug Discov. 22, 723–742 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Efimova, I. et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J. Immunother. Cancer 8, e001369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li, J. et al. Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci. Transl. Med. 15, eadg3049 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Diepstraten, S. T. et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 22, 45–64 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014). With Rongvaux et al. (ref. 122), these articles demonstrate that the activation of executioner caspases robustly suppresses type I interferon responses elicited by MOMP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rodriguez-Ruiz, M. E. et al. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 8, e1655964 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Han, C. et al. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat. Immunol. 21, 546–554 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31.e17 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Giampazolias, E. et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol. 19, 1116–1129 (2017). This original report provides compelling evidence in support of the notion that caspase-independent cancer cell death is more immunogenic than its caspase-dependent counterpart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Klionsky, D. J. et al. Autophagy in major human diseases. EMBO J. 40, e108863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu, Q. et al. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J. Immunother. Cancer 9, e002722 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Debnath, J., Gammoh, N. & Ryan, K. M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 24, 560–575 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Thompson, E. A. & Powell, J. D. Inhibition of the adenosine pathway to potentiate cancer immunotherapy: potential for combinatorial approaches. Annu. Rev. Med. 72, 331–348 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Azambuja, J. H., Ludwig, N., Braganhol, E. & Whiteside, T. L. Inhibition of the adenosinergic pathway in cancer rejuvenates innate and adaptive immunity. Int. J. Mol. Sci. 20, 5698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chiappori, A. A. et al. Phase I study of taminadenant (PBF509/NIR178), an adenosine 2A receptor antagonist, with or without spartalizumab (PDR001), in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 28, 2313–2320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lim, E. A. et al. Phase Ia/b, open-label, multicenter study of AZD4635 (an adenosine A2A receptor antagonist) as monotherapy or combined with durvalumab, in patients with solid tumors. Clin. Cancer Res. 28, 4871–4884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cascone, T. et al. Neoadjuvant durvalumab alone or combined with novel immuno-oncology agents in resectable lung cancer: the phase II NeoCOAST platform trial. Cancer Discov. 13, 2394–2411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Herbst, R. S. et al. COAST: an open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 3383–3393 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Song, X. et al. Pharmacologic suppression of B7-H4 glycosylation restores antitumor immunity in immune-cold breast cancers. Cancer Discov. 10, 1872–1893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, L. et al. Ablation of ERO1A induces lethal endoplasmic reticulum stress responses and immunogenic cell death to activate anti-tumor immunity. Cell Rep. Med. 4, 101206 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lin, H. et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell 39, 480–493.e486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Feng, M. et al. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat. Commun. 9, 3194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Liu, P. et al. Immunosuppression by mutated calreticulin released from malignant cells. Mol. Cell 77, 748–760.e749 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2, 63ra94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ansell, S. M. et al. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin. Cancer Res. 27, 2190–2199 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Querfeld, C. et al. Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sézary syndrome: a multicentre, phase 1 study. Lancet Haematol. 8, e808–e817 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. van Helden, M. J. et al. BYON4228 is a pan-allelic antagonistic SIRPα antibody that potentiates destruction of antibody-opsonized tumor cells and lacks binding to SIRPγ on T cells. J. Immunother. Cancer 11, e006567 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bahri, M. et al. SIRPα-specific monoclonal antibody enables antibody-dependent phagocytosis of neuroblastoma cells. Cancer Immunol. Immunother. 71, 71–83 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Giampazolias, E. et al. Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell 184, 4016–4031.e4022 (2021). This article elegantly demonstrates that secreted GSN inhibits the binding of F-actin to DNGR1, hence suppressing antigen cross-presentation by cDC1s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim, Y., Cho, N. Y., Jin, L., Jin, H. Y. & Kang, G. H. Prognostic significance of STING expression in solid tumor: a systematic review and meta-analysis. Front. Oncol. 13, 1244962 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen, C., Wang, J., Dong, C., Lim, D. & Feng, Z. Development of a risk model to predict prognosis in breast cancer based on cGAS-STING-related genes. Front. Genet. 14, 1121018 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yamazaki, T. et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat. Immunol. 21, 1160–1171 (2020). This report connects MOMP-dependent mtDNA-driven cGAS signalling in malignant cells with the ability of radiotherapy to elicit anticancer immune responses.

    Article  CAS  PubMed  Google Scholar 

  153. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bartsch, K. et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26, 3960–3972 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Ladoire, S. et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy 12, 864–875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Baracco, E. E. et al. Contribution of annexin A1 to anticancer immunosurveillance. Oncoimmunology 8, e1647760 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Le Naour, J. et al. A TLR3 ligand reestablishes chemotherapeutic responses in the context of FPR1 deficiency. Cancer Discov. 11, 408–423 (2021).

    Article  PubMed  Google Scholar 

  160. Le Naour, J. et al. Formyl peptide receptor-1 (FPR1) represses intestinal oncogenesis. Oncoimmunology 12, 2237354 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Carbonnier, V. et al. Rs867228 in FPR1 accelerates the manifestation of luminal B breast cancer. Oncoimmunology 12, 2189823 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Reijers, I. L. M. et al. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial. Nat. Med. 28, 1178–1188 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kepp, O. et al. A fluorescent biosensor-based platform for the discovery of immunogenic cancer cell death inducers. Oncoimmunology 8, 1606665 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Cultrara, C. et al. A biologic-device combination product delivering tumor-derived antigens elicits immunogenic cell death-associated immune responses against glioblastoma. J. Immunother. Cancer 11, e006880 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Garg, A. D. et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci. Transl. Med. 8, 328ra327 (2016).

    Article  Google Scholar 

  171. Vedunova, M. et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis. 13, 1062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Petroni, G., Formenti, S. C., Chen-Kiang, S. & Galluzzi, L. Immunomodulation by anticancer cell cycle inhibitors. Nat. Rev. Immunol. 20, 669–679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chuprin, J. et al. Humanized mouse models for immuno-oncology research. Nat. Rev. Clin. Oncol. 20, 192–206 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Richter, C. et al. Generation of inducible immortalized dendritic cells with proper immune function in vitro and in vivo. PLoS ONE 8, e62621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhao, L. et al. A genotype–phenotype screening system using conditionally immortalized immature dendritic cells. STAR Protoc. 2, 100732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, S. et al. Anticancer effects of ikarugamycin and astemizole identified in a screen for stimulators of cellular immune responses. J. Immunother. Cancer 11, e006785 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zhao, L. et al. BCL2 inhibition reveals a dendritic cell-specific immune checkpoint that controls tumor immunosurveillance. Cancer Discov. 13, 2448–2469 (2023). This article provides abundant evidence to support the notion that BCL-2 inhibits antigen cross-presentation by cDC1s by preventing mtDNA-driven cGAS signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Theisen, D. J. et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362, 694–699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, L. et al. Lurbinectedin for the treatment of small cell lung cancer. Drugs Today 57, 377–385 (2021).

    Article  CAS  Google Scholar 

  181. Baines, A. C. et al. FDA approval summary: belantamab mafodotin for patients with relapsed or refractory multiple myeloma. Clin. Cancer Res. 28, 4629–4633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pozzi, C. et al. The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat. Med. 22, 624–631 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. DeSelm, C. et al. Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol. Ther. 26, 2542–2552 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sugita, M. et al. Radiation therapy improves CAR T cell activity in acute lymphoblastic leukemia. Cell Death Dis. 14, 305 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020). This paper elegantly demonstrates that efficient autophagic responses in malignant cells limit anticancer immunity by degrading MHC class I molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Vanpouille-Box, C. et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yang, J., Chen, Y., Jing, Y., Green, M. R. & Han, L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat. Rev. Clin. Oncol. 20, 211–228 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Pahl, J. H. et al. Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin. Cancer Res. 18, 432–441 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Hinterberger, M. et al. Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. J. Immunother. Cancer 9, e001586 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Charpentier, M., Formenti, S. & Demaria, S. CD40 agonism improves anti-tumor T cell priming induced by the combination of radiation therapy plus CTLA4 inhibition and enhances tumor response. Oncoimmunology 12, 2258011 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Huang, F. Y. et al. A recombinant oncolytic Newcastle virus expressing MIP-3α promotes systemic antitumor immunity. J. Immunother. Cancer 8, e000330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Lu, J. et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 8, 1811 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Bausart, M. et al. Combination of local immunogenic cell death-inducing chemotherapy and DNA vaccine increases the survival of glioblastoma-bearing mice. Nanomedicine 50, 102681 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Kroemer, G., McQuade, J. L., Merad, M., Andre, F. & Zitvogel, L. Bodywide ecological interventions on cancer. Nat. Med. 29, 59–74 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Blake, S. J., Wolf, Y., Boursi, B. & Lynn, D. J. Role of the microbiota in response to and recovery from cancer therapy. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00951-0 (2023).

    Article  PubMed  Google Scholar 

  198. Dai, J. et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176, 1447–1460.e1414 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Obradovic, M. M. S. et al. Glucocorticoids promote breast cancer metastasis. Nature 567, 540–544 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Yang, H. et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat. Med. 25, 1428–1441 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Nunez-Ruiz, A., Sanchez-Brena, F., Lopez-Pacheco, C., Acevedo-Dominguez, N. A. & Soldevila, G. Obesity modulates the immune macroenvironment associated with breast cancer development. PLoS ONE 17, e0266827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Dyck, L. et al. Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function. J. Exp. Med. 219, e20210042 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Boi, S. K. et al. Obesity diminishes response to PD-1-based immunotherapies in renal cancer. J. Immunother. Cancer 8, e000725 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Gomes-Santos, I. L. et al. Exercise training improves tumor control by increasing CD8+ T-cell infiltration via CXCR3 signaling and sensitizes breast cancer to immune checkpoint blockade. Cancer Immunol. Res. 9, 765–778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Among other sources, L.G. is or has been supported (as a PI unless otherwise indicated) by one R01 grant from the NIH/NCI (grant no, CA271915), by two Breakthrough Level 2 grants from the US DoD BCRP (grant nos. BC180476P1 and BC210945), by a grant from the STARR Cancer Consortium (grant no. I16-0064), by a Transformative Breast Cancer Consortium grant from the US DoD BCRP (grant no. W81XWH2120034, PI: Formenti), by a U54 grant from NIH/NCI (grant no. CA274291, PI: Deasy, Formenti, Weichselbaum), by the 2019 Laura Ziskin Prize in Translational Research (grant no. ZP-6177, PI: Formenti) from the Stand Up to Cancer (SU2C), by a Mantle Cell Lymphoma Research Initiative (MCL-RI, PI: Chen-Kiang) grant from the Leukaemia and Lymphoma Society (LLS) and by a Rapid Response Grant from the Functional Genomics Initiative (New York, USA). Among other sources, G.K. is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) — Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); European Research Council Advanced Investigator Award (ERC-2021-ADG, ICD-Cancer, grant no. 101052444), as well as by European Union Horizon 2020 Projects Oncobiome, Prevalung (grant no. 101095604) and Crimson. Views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union, the European Research Council or any other granting authority. Neither the European Union nor any other granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

L.G., D.S., G.K. and F.M.M. wrote the first version of the article, with constructive input from E.G. E.G. built display items under direct supervision from L.G. All authors approve the submitted version of the article.

Corresponding authors

Correspondence to Lorenzo Galluzzi, Guido Kroemer or Francesco M. Marincola.

Ethics declarations

Competing interests

L.G. holds or has held research contracts with Lytix Biopharma, Promontory and Onxeo, has received consulting or advisory honoraria from Boehringer-Ingelheim, AstraZeneca, OmniSEQ, Onxeo, The Longevity Labs, Inzen, Imvax, Sotio, Promontory, Noxopharm, EduCom and the Luke Heller TECPR2 Foundation, and holds Promontory stock options. G.K. has held research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Tollys and Vascage. G.K. is on the Board of Directors of the Bristol Myers Squibb Foundation France. D.S. is a full-time employee of Violet Therapeutics. G.K. is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio. G.K. is in the scientific advisory boards of Hevolution, Institut Servier, Longevity Vision Funds and Rejuveron Life Sciences. G.K. is the inventor of patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders. G.K.’s wife, Laurence Zitvogel, has held research contracts with Glaxo Smyth Kline, Incyte, Lytix, Kaleido, Innovate Pharma, Daiichi Sankyo, Pilege, Merus, Transgene, 9m, Tusk and Roche, was on the Board of Directors of Transgene, is a co-founder of everImmune and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota. G.K.’s brother, Romano Kroemer, was an employee of Sanofi and now consults for Boehringer-Ingelheim. The funders had no role in the design of the study, in the writing of the manuscript or in the decision to publish the results. F.M.M. is a full-time employee of Sonata Therapeutics.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Dmitri Krysko, Emily Cheng and the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galluzzi, L., Guilbaud, E., Schmidt, D. et al. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov (2024). https://doi.org/10.1038/s41573-024-00920-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-024-00920-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer