Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

A PCR-based clonal analysis of radiation-induced loss of heterozygosity in haemopoietic stem cells

Abstract

CBA mouse strains have been used for many years as a model of radiation-induced acute myeloid leukaemia and the leukaemias in CBA and their F1 hybrids are characterised by a specific loss of heterozygosity involving one homologue of chromosome 2. Previous cytogenetic studies of transplanted irradiated bone marrow, or of bone marrow obtained from irradiated mice significantly before the appearance of leukaemia, have been interpreted as the chromosome 2 deletion being a high frequency, possibly initiating event. However, these studies had not specifically addressed the question of whether the characteristic deletion was induced at a high frequency in stem cells. Using a PCR-based technique, we have studied the induction of chromosome 2 LOH in the progeny of (CBA/H × C57BL/6)F1 stem cells after a potentially leukaemogenic radiation exposure. Whilst chromosome 2 LOH can be induced directly by irradiation and there is a preferential loss of the CBA allele, the frequency is no greater than LOH induced in other chromosomal regions studied. The data do not support radiation-induced deletion involving one homologue of chromosome 2 in long-term repopulating stem cells (<1 in 200) being as high a frequency event as might be inferred by previous cytogenetic studies of total bone marrow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Leone G, Mele L, Pulsoni A, Equitan F, Pagano L . The incidence of secondary leukemias Haematologica 1999 84: 937–945

    CAS  PubMed  Google Scholar 

  2. United Nations . Sources and Effects of Ionizing Radiations United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly with Scientific Annexes, United Nations: New York 1993 pp 551–618

  3. Barr FG . The malevolence of matchmaking Nat Genet 1996 12: 113–114

    CAS  PubMed  Google Scholar 

  4. Rabbitts TH . Chromosomal translocations in human cancer Nature 1994 372: 143–149

    CAS  PubMed  Google Scholar 

  5. Tang JL, Yeh SH, Chen PJ, Lin MT, Tien HF, Chen YC . Inactivation of retinoblastoma gene in acute myelogenous leukaemia Br J Haematol 1992 82: 502–507

    CAS  PubMed  Google Scholar 

  6. King-Underwood L, Renshaw J, Pritchard-Jones K . Mutations in the Wilms’ tumour gene WT1 in leukemias Blood 1996 87: 2171–2179

    CAS  PubMed  Google Scholar 

  7. Pedersen-Bjergaard J, Philip P, Larsen SO, Jensen G, Byrsting K . Chromosome aberrations and prognostic factors in therapy-related myelodysplasia and acute non-lymphocytic leukaemia Blood 1990 76: 1083–1091

    CAS  PubMed  Google Scholar 

  8. Upton AC, Wolf FF, Kimball AW . A comparison of the induction of myeloid leukemia and lymphoid leukemias in X-irradiated RF mice Cancer Res 1958 18: 842–848

    CAS  PubMed  Google Scholar 

  9. Haran-Ghera N, Kotker M, Meshorer A . Studies on leukemia development in the SJL/J strain of mice J Natl Cancer Inst 1967 39: 653–661

    CAS  PubMed  Google Scholar 

  10. Major I, Mole RH . Myeloid leukaemia in X-ray irradiated CBA mice Nature 1978 272: 455–456

    CAS  PubMed  Google Scholar 

  11. Seki M, Yoshida K, Nishimura M, Nemoto K . Radiation-induced myeloid leukaemia in C3H/He mice and the effect of prenisolone acetate on leukemogenesis Radiat Res 1991 127: 146–149

    CAS  PubMed  Google Scholar 

  12. Hayata I, Seki M, Yoshida K, Hirashima K, Sado T, Yamagiwa J, Ishihara Y . Chromosome aberrations observed in 52 mouse myeloid leukaemias Cancer Res 1983 43: 367–373

    CAS  PubMed  Google Scholar 

  13. Humphreys ER, Loutit JR, Major IR, Stones VA . The induction by 224Ra of myeloid leukemia and osteosarcoma in male CBA mice Int J Rad Biol 1985 47: 239–247

    CAS  Google Scholar 

  14. Rithidech KN, Cronkite EP, Bond VP . Advantages of the CBA mouse in leukaemogenesis research Blood Cells Mol Dis 1999 25: 38–45

    CAS  PubMed  Google Scholar 

  15. Trakhtenbrot L, Krautghamer R, Resnitzky P, Haran-Ghera N . Deletion of chromosome 2 is an early event in the development of radiation-induced myeloid leukemia in SJL/J mice Leukemia 1988 2: 545–550

    CAS  PubMed  Google Scholar 

  16. Silver A, Breckon G, Masson WK, Malowany D, Cox R . Studies on radiation myeloid leukaemogenesis in the mouse In: Fielden EM et al (eds) Radiation Research vol. 2 Taylor and Francis: London 1987 pp 495–500

    Google Scholar 

  17. Rithidech KN, Bond VP, Cronkite EP, Thompson MH, Bullis JE . Hypermutability of mouse chromosome 2 during the development of x-ray-induced murine myeloid leukemia Proc Natl Acad Sci USA 1995 92: 1152–1156

    CAS  PubMed  Google Scholar 

  18. Alexander BJ, Rasko JEJ, Morahan G, Cook WD . Gene deletion explains both in vivo and in vitro generated chromosome 2 aberrations associated with murine myeloid leukemia Leukemia 1995 9: 2009–2015

    CAS  PubMed  Google Scholar 

  19. Silver A, Moody J, Dunford R, Clark D, Ganz S, Bulman R, Bouffler S, Finnon P, Meijne E, HuisKamp R, Cox R . Molecular mapping of chromosome 2 deletions in murine radiation-induced AML localizes a putative tumor suppressor gene to a 1.0 cM region homologous to human chromosome segment 11p11–12 Genes Chromosom Cancer 1999 24: 95–104

    CAS  PubMed  Google Scholar 

  20. Cleary HJ, Wright E, Plumb M . Specificity of loss of heterozygosity in radiation-induced mouse myeloid and lymphoid leukaemias Int J Rad Biol 1999 10: 1223–1230

    Google Scholar 

  21. Matsumoto Y, Kosugi S, Shinbo T, Chou D, Ohashi M, Wakabayashi Y, Sakai K, Okumuto M, Mori N, Aizawa S, Niwa O, Kominami R . Allelic loss analysis of γ-ray-induced mouse thymic lymphomas: two candidate tumour suppressor gene loci on chromosomes 12 and 16 Oncogene 1998 16: 2747–2754

    CAS  PubMed  Google Scholar 

  22. Breckon G, Silver A, Cox R . Radiation-induced chromosome 2 breakage and initiation on murine radiation acute myeloid leukaemogenesis J Radiat Res 1991 32: (Suppl. 2) 248–256

    PubMed  Google Scholar 

  23. Haran-Ghera N, Peled A, Krautghamer R, Resnitzky P . Initiation and promotion in radiation-induced myeloid leukemia Leukemia 1992 6: 689–695

    CAS  PubMed  Google Scholar 

  24. Wright EG . Radiation-induced genomic instability in haemopoietic cells Int J Rad Biol 1998 74: 681–687

    CAS  PubMed  Google Scholar 

  25. Bradley TR, Metcalf D . The growth of mouse bone marrow cells in cultures Aust J Exp Biol Med Sci 1966 44: 287–299

    CAS  PubMed  Google Scholar 

  26. Till JE, McCullough EA . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells Radiat Res 1961 14: 213–222

    CAS  PubMed  Google Scholar 

  27. Lorimore SA, Pragnell IB, Eckmann L, Wright EG . Synergistic interactions allow colony formation in vitro by murine haemopoietic stem cells Leukemia Res 1990 14: 481–489

    CAS  Google Scholar 

  28. Boultwood J, Thompson M, Fidler D, Lorimore SA, Lewis MS, Wainscoat JS, Wright E . Pulse field electrophoresis on single murine hemopoietic colonies Leukemia 1993 7: 1635–1636

    CAS  PubMed  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T (eds) . Analysis and Cloning of Eukaryotic Genomic DNA Cold Spring Harbor Laboratory Press: Cold Spring Harbor 1989 pp 9.4–9.13

    Google Scholar 

  30. Fennelly J, Cabtree G, MacDonald D, Lorimore S, Laval S, Proffitt J, Boyd Y, Wright E, Plumb M . Complex Y chromosome aberrations are a recurrent secondary event in radiation-induced murine acute myeloid leukaemia Leukemia 1995 9: 506–512

    CAS  PubMed  Google Scholar 

  31. Liang P, Pardee AB . The polymerase chain reaction In: Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K (eds) Current Protocols in Molecular Biology vol. 3 John Wiley and Sons: New York 1999 pp 15.0.3–15.8.8

    Google Scholar 

  32. Malumbres M, Perez de Castro I, Santos J, Perez-Olle R, Fernandes-Piqueras J . An AC-repeat adjacent to mouse Cdk2B allow the detection of specific allelic losses in the p15INK4b and p16INK4a tumor suppressor gene Mammal Genome 1998 9: 183–185

    CAS  Google Scholar 

  33. Dietrich WF, Radany EH, Smith JS, Bishop JM, Hanahan D, Lander ES . Genome-wide search for loss of heterozygosity in transgenic mouse tumors reveals candidate tumor suppressor genes on chromosome 19 and 16 Proc Natl Acad Sci USA 1994 91: 9451–9455

    CAS  PubMed  Google Scholar 

  34. Clark DJ, Meijne EIM, Bouffler SD, Huiskamp R, Skidmore CJ, Cox R, Silver ARJ . Microsatellite analysis of recurrent chromosome 2 deletions in acute myeloid leukaemia induced by radiation in FI hybrid mice Genes Chromosom Cancer 1996 16: 238–246

    CAS  PubMed  Google Scholar 

  35. Bouffler SD, Breckon G, Cox R . Chromosomal mechanisms in murine radiation acute myeloid leukaemogenesis Carcinogenesis 1996 17: 655–659

    CAS  PubMed  Google Scholar 

  36. Breckon G, Papworth D, Cox R . Murine radiation leukaemogenesis: a possible role for radiation sensitive sites on chromosome 2 Genes Chromosom Cancer 1991 3: 367–375

    CAS  PubMed  Google Scholar 

  37. Bouffler SD, Meijne EIM, Morris DJ, Paworth D . Chromosome 2 hypersensitivity and clonal development in murine radiation acute myeloid leukaemia Int J Rad Biol 1997 72: 181–189

    CAS  PubMed  Google Scholar 

  38. Preston DL, Kusumi S, Tomanaga M, Izumi S, Ron E, Kuramoto A, Kamada N, Dohy H, Matsuo T, Matsui T . Cancer incidence in atomic bomb survivors. Part III: leukaemia, lymphoma and multiple myeloma Radiat Res 1994 137: S68–S97

    CAS  Google Scholar 

  39. Grosovsky AJ . Radiation-induced mutations in unirradiated DNA Proc Natl Acad Sci USA 1999 96: 5346–5347

    CAS  PubMed  Google Scholar 

  40. Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ . Acquired, non-random chromosomal abnormalities associated with the development of acute promyelocytic leukaemia in transgenic mice Proc Natl Acad Sci USA 2000 97: 13306–13311

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a specialist programme in Radiation Leukaemogenesis from the Leukaemia Research Fund (SP 9923) and MRC programme grant (G 9824583). We thank the staff of the biological services of the MRC Unit in Harwell (Oxfordshire).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigat, B., Lorimore, S., Plumb, M. et al. A PCR-based clonal analysis of radiation-induced loss of heterozygosity in haemopoietic stem cells. Leukemia 15, 1604–1611 (2001). https://doi.org/10.1038/sj.leu.2402237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402237

Keywords

Search

Quick links