Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Heat shock proteins – modulators of apoptosis in tumour cells

Abstract

Apoptosis is a genetically programmed, physiological method of cell destruction. A variety of genes are now recognised as positive or negative regulators of this process. Expression of inducible heat shock proteins (hsp) is known to correlate with increased resistance to apoptosis induced by a range of diverse cytotoxic agents and has been implicated in chemotherapeutic resistance of tumours and carcinogenesis. Intensive research on apoptosis over the past number of years has provided significant insights into the mechanisms and molecular events that occur during this process. The modulatory effects of hsps on apoptosis are well documented, however, the mechanisms of hsp-mediated protection against apoptosis remain to be fully defined, although several hypotheses have been proposed. Elucidation of these mechanisms should reveal novel targets for manipulating the sensitivity of leukaemic cells to therapy. This review aims to explain the currently understood process of apoptosis and the effects of hsps on this process. Several proposed mechanisms for hsp protection against apoptosis and the therapeutic implications of hsps in leukaemia are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Arends MJ, Wyllie AH . Apoptosis: mechanisms and roles in pathology Int Rev Exp Pathol 1991 32: 223–254

    Article  CAS  PubMed  Google Scholar 

  2. Barr PJ, Tomei LD . Apoptosis and its role in human disease Biotechnology (NY) 1994 12: 487–493

    Article  CAS  Google Scholar 

  3. Thompson CB . Apoptosis in the pathogenesis and treatment of disease Science 1995 267: 1456–1462

    Article  CAS  PubMed  Google Scholar 

  4. Haslett C . Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes (editorial) Clin Sci (Colch) 1992 83: 639–648

    Article  CAS  Google Scholar 

  5. Wyllie AH, Kerr JF, Currie AR . Cell death: the significance of apoptosis Int Rev Cytol 1980 68: 251–306

    Article  CAS  PubMed  Google Scholar 

  6. Searle J, Kerr JF, Bishop CJ . Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance Pathol Annu 1982 17: 229–259

    PubMed  Google Scholar 

  7. Wyllie AH . Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview Cancer Metastasis Rev 1992 11: 95–103

    Article  CAS  PubMed  Google Scholar 

  8. Hahn GM, Li GC . Thermotolerance, thermoresistance and thermosensitization. In: Morimoto RI, Tissieres A, Georgeopoulos C (eds) Stress Proteins in Biology and Medicine Cold Spring Harbor Press: Cold Spring Harbor, NY 1990 p 79

    Google Scholar 

  9. Lindquist S, Craig EA . The heat-shock proteins Annu Rev Genet 1988 22: 631–677

    Article  CAS  PubMed  Google Scholar 

  10. Kojika S, Sugita K, Inukai T, Saito M, Iijima K, Tezuka T, Goi K, Shiraishi K, Mori T, Okazaki T, Kagami K, Ohyama K, Nakazawa S . Mechanisms of glucocorticoid resistance in human leukemic cells: implication of abnormal 90 and 70 kDa heat shock proteins Leukemia 1996 10: 994–999

    CAS  PubMed  Google Scholar 

  11. Kim SH, Yeo GS, Lim YS, Kang CD, Kim CM, Chung BS . Suppression of multidrug resistance via inhibition of heat shock factor by quercetin in MDR cells Exp Mol Med 1998 30: 87–92

    Article  CAS  PubMed  Google Scholar 

  12. Konno A, Sato N, Yagihashi A, Torigoe T, Cho JM, Torimoto K, Hara I, Wada Y, Okubo M, Takahashi N, Kikuchi K . Heat- or stress-inducible transformation-associated cell surface antigen on the activated H-ras oncogene-transfected rat fibroblast Cancer Res 1989 49: 6578–6582

    CAS  PubMed  Google Scholar 

  13. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B . Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis Mol Cell Biol 1997 17: 5317–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mehlen P, Schulze-Osthoff K, Arrigo AP . Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death J Biol Chem 1996 271: 16510–16514

    Article  CAS  PubMed  Google Scholar 

  15. Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, Mehlen P . HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs Cancer Res 1997 57: 2661–2667

    CAS  PubMed  Google Scholar 

  16. Galea-Lauri J, Richardson AJ, Latchman DS, Katz DR . Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNF-alpha and cycloheximide: a possible role in immunopathology J Immunol 1996 157: 4109–4118

    CAS  PubMed  Google Scholar 

  17. Liossis SN, Ding XZ, Kiang JG, Tsokos GC . Overexpression of the heat shock protein 70 enhances the TCR/CD3- and Fas/Apo-1/CD95-mediated apoptotic cell death in Jurkat T cells J Immunol 1997 158: 5668–5775

    CAS  PubMed  Google Scholar 

  18. Wang JH, Redmond HP, Watson RW, Bouchier-Hayes D . Induction of human endothelial cell apoptosis requires both heat shock and oxidative stress responses Am J Physiol 1997 272: C1543–C1551

    Article  CAS  PubMed  Google Scholar 

  19. Ritossa F . A new puffing pattern induced by heat shock and DNP in Drosophila Experientia 1962 18: 571–573

    Article  CAS  Google Scholar 

  20. Tissieres A, Mitchell HK, Tracy UM . Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs J Mol Biol 1974 84: 389–398

    Article  CAS  PubMed  Google Scholar 

  21. Lindquist S . Heat-shock proteins and stress tolerance in microorganisms Curr Opin Genet Dev 1992 2: 748–755

    Article  CAS  PubMed  Google Scholar 

  22. Feige U, Polla BS . Hsp70 – a multi-gene, multi-structure, multi-function family with potential clinical applications Experientia 1994 50: 979–986

    Article  CAS  PubMed  Google Scholar 

  23. Chretien P, Landry J . Enhanced constitutive expression of the 27-kDa heat shock proteins in heat-resistant variants from Chinese hamster cells J Cell Physiol 1988 137: 157–166

    Article  CAS  PubMed  Google Scholar 

  24. Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP . Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts J Immunol 1995 154: 363–374

    CAS  PubMed  Google Scholar 

  25. Arrigo AP, Suhan JP, Welch WJ . Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein Mol Cell Biol 1988 8: 5059–5071

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G . Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity J Biol Chem 1994 269: 20780–20784

    Article  CAS  PubMed  Google Scholar 

  27. Hendrick JP, Hartl FU . Molecular chaperone functions of heat-shock proteins Annu Rev Biochem 1993 62: 349–384

    Article  CAS  PubMed  Google Scholar 

  28. Li GC, Li L, Liu RY, Rehman M, Lee WM . Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain Proc Natl Acad Sci USA 1992 89: 2036–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanchez Y, Lindquist SL . HSP104 required for induced thermotolerance Science 1990 248: 1112–1115

    Article  CAS  PubMed  Google Scholar 

  30. Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga M, Sakai H, Yahara I . Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins Proc Natl Acad Sci USA 1986 83: 8054–8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wiech H, Buchner J, Zimmermann R, Jakob U . Hsp90 chaperones protein folding in vitro Nature 1992 358: 169–170

    Article  CAS  PubMed  Google Scholar 

  32. Welch WJ . Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease Physiol Rev 1992 72: 1063–1081

    Article  CAS  PubMed  Google Scholar 

  33. Beckmann RP, Mizzen LE, Welch WJ . Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly Science 1990 248: 850–854

    Article  CAS  PubMed  Google Scholar 

  34. Angelidis CE, Lazaridis I, Pagoulatos GN . Constitutive expression of heat-shock protein 70 in mammalian cells confers thermoresistance Eur J Biochem 1991 199: 35–39

    Article  CAS  PubMed  Google Scholar 

  35. Samali A, Cotter TG . Heat shock proteins increase resistance to apoptosis Exp Cell Res 1996 223: 163–170

    Article  CAS  PubMed  Google Scholar 

  36. Frydman J, Hartl FU . Molecular chaperone functions of hsp70 and hsp60 in protein folding. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Heat Shock Proteins and Molecular Chaperones Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1994 p 251–283

    Google Scholar 

  37. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S . Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells EMBO J 1999 18: 2040–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW . Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis EMBO J 1999 18: 2049–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miron T, Vancompernolle K, Vandekerckhove J, Wilchek M, Geiger B . A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein J Cell Biol 1991 114: 255–261

    Article  CAS  PubMed  Google Scholar 

  40. Clechanover A . The ubiquitin-proteasome proteolytic pathway Cell 1994 79: 13–21

    Article  Google Scholar 

  41. Lindquist S . Translational efficiency of heat-induced messages in Drosophila melanogaster cells J Mol Biol 1980 137: 151–158

    Article  CAS  PubMed  Google Scholar 

  42. Creagh EM, Cotter TG . Selective protection by hsp 70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis Immunology 1999 97: 36–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu C . The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I Nature 1980 286: 854–860

    Article  CAS  PubMed  Google Scholar 

  44. Fernandes M, O'Brien T, Lis J . Structure and regulation of heat shock gene promoters. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The Biology of Heat Shock Proteins and Molecular Chaperones Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1994 p 375–393

    Google Scholar 

  45. Morimoto RI, Kline MP, Bimston DN, Cotto JJ . The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones Essays Biochem 1997 32: 17–29

    CAS  PubMed  Google Scholar 

  46. Wu C, Clos J, Giorgi G, Haroun RI . Structure and regulation of heat shock transcription factor. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The Biology of Heat Shock Proteins and Molecular Chaperones Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1994 395–416

    Google Scholar 

  47. Morimoto RI, Jurivich DA, Kroeger PE . Regulation of heat shock gene transcription by a family of heat shock factors. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The Biology of Heat Shock Proteins and Molecular Chaperones Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1994 417–455

    Google Scholar 

  48. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R . Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1 Cell 1998 94: 471–480

    Article  CAS  PubMed  Google Scholar 

  49. Elia G, De Marco A, Rossi A, Santoro MG . Inhibition of HSP70 expression by calcium ionophore A23187 in human cells. An effect independent of the acquisition of DNA-binding activity by the heat shock transcription factor J Biol Chem 1996 271: 16111–16118

    Article  CAS  PubMed  Google Scholar 

  50. Liu H, Lightfoot R, Stevens JL . Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols J Biol Chem 1996 271: 4805–4812

    Article  CAS  PubMed  Google Scholar 

  51. Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K . Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart Circulation 1999 99: 934–941

    Article  CAS  PubMed  Google Scholar 

  52. Marini M, Frabetti F, Musiani D, Franceschi C . Oxygen radicals induce stress proteins and tolerance to oxidative stress in human lymphocytes Int J Radiat Biol 1996 70: 337–350

    Article  CAS  PubMed  Google Scholar 

  53. Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A . Antioxidant-mediated inhibition of the heat shock response leads to apoptosis FEBS Lett 1999 445: 98–102

    Article  CAS  PubMed  Google Scholar 

  54. Pirkkala L, Alastalo TP, Nykanen P, Seppa L, Sistonen L . Differentiation lineage-specific expression of human heat shock transcription factor 2 FASEB J 1999 13: 1089–1098

    Article  CAS  PubMed  Google Scholar 

  55. Rougvie AE, Lis JT . The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged Cell 1988 54: 795–804

    Article  CAS  PubMed  Google Scholar 

  56. Yost HJ, Lindquist S . RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis Cell 1986 45: 185–193

    Article  CAS  PubMed  Google Scholar 

  57. Craig EA, Gross CA . Is hsp70 the cellular thermometer? Trends Biochem Sci 1991 16: 135–140

    Article  CAS  PubMed  Google Scholar 

  58. Hightower LE . Heat shock, stress proteins, chaperones, and proteotoxicity Cell 1991 66: 191–197

    Article  CAS  PubMed  Google Scholar 

  59. Baler R, Welch WJ, Voellmy R . Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor J Cell Biol 1992 117: 1151–1159

    Article  CAS  PubMed  Google Scholar 

  60. Mosser DD, Duchaine J, Massie B . The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70 Mol Cell Biol 1993 13: 5427–5438

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mifflin LC, Cohen RE . hsc70 moderates the heat shock (stress) response in Xenopus laevis oocytes and binds to denatured protein inducers J Biol Chem 1994 269: 15718–15723

    Article  CAS  PubMed  Google Scholar 

  62. Kim HR, Kang HS, Kim HD . Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells IUBMB Life 1999 48: 429–433

    Article  CAS  PubMed  Google Scholar 

  63. Suda T, Takahashi T, Golstein P, Nagata S . Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family Cell 1993 75: 1169–1178

    Article  CAS  PubMed  Google Scholar 

  64. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME . Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor EMBO J 1995 14: 5579–5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Enari M, Talanian RV, Wong WW, Nagata S . Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis Nature 1996 380: 723–726

    Article  CAS  PubMed  Google Scholar 

  66. Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH . Monoclonal antibody-mediated tumor regression by induction of apoptosis Science 1989 245: 301–305

    Article  CAS  PubMed  Google Scholar 

  67. Debatin KM, Goldmann CK, Bamford R, Waldmann TA, Krammer PH . Monoclonal-antibody-mediated apoptosis in adult T-cell leukaemia Lancet 1990 335: 497–500

    Article  CAS  PubMed  Google Scholar 

  68. Komada Y, Sakurai M . Fas receptor (CD95)-mediated apoptosis in leukemic cells Leuk Lymphoma 1997 25: 9–21

    Article  CAS  PubMed  Google Scholar 

  69. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S . Lethal effect of the anti-Fas antibody in mice Nature 1993 364: 806–809

    Article  CAS  PubMed  Google Scholar 

  70. Findley HW, Zhou M . The clinical significance of Fas expression in leukemia: questions and controversies Leukemia 1999 13: 147–149

    Article  CAS  PubMed  Google Scholar 

  71. Jaattela M, Wissing D . Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection J Exp Med 1993 177: 231–236

    Article  CAS  PubMed  Google Scholar 

  72. Richards EH, Hickey E, Weber L, Master JR . Effect of overexpression of the small heat shock protein HSP27 on the heat and drug sensitivities of human testis tumor cells Cancer Res 1996 56: 2446–2451

    CAS  PubMed  Google Scholar 

  73. Guenal I, Sidoti-de Fraisse C, Gaumer S, Mignotte B . Bcl-2 and Hsp27 act at different levels to suppress programmed cell death Oncogene 1997 15: 347–360

    Article  CAS  PubMed  Google Scholar 

  74. Trautinger F, Kokesch C, Herbacek I, Knobler RM, Kindas-Mugge I . Overexpression of the small heat shock protein, hsp27, confers resistance to hyperthermia, but not to oxidative stress and UV-induced cell death, in a stably transfected squamous cell carcinoma cell line J Photochem Photobiol B 1997 39: 90–95

    Article  CAS  PubMed  Google Scholar 

  75. Strahler JR, Kuick R, Eckerskorn C, Lottspeich F, Richardson BC, Fox DA, Stoolman LM, Hanson CA, Nichols D, Tueche HJ, Hanash SM . Identification of two related markers for common acute lymphoblastic leukemia as heat shock proteins J Clin Invest 1990 85: 200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arrigo AP . Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death Biol Chem 1998 379: 19–26

    CAS  PubMed  Google Scholar 

  77. Mehlen P, Kretz-Remy C, Preville X, Arrigo AP . Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death EMBO J 1996 15: 2695–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van den Dobbelsteen DJ, Nobel CSI, Schlegel J, Cotgreave IA, Orrenius S, Slater AF . Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody J Biol Chem 1996 271: 15420–15427

    Article  CAS  PubMed  Google Scholar 

  79. Bauer MKA, Vogt M, Los M, Siegel J, Wesselborg S, Schulze-Osthoff K . Role of reactive oxygen intermediates in activation-induced CD95 (APO- 1/Fas) ligand expression J Biol Chem 1998 273: 8048–8055

    Article  CAS  PubMed  Google Scholar 

  80. Chant ID, Rose PE, Morris AG . Susceptibility of AML cells to in vitro apoptosis correlates with heat shock protein 70 (hsp 70) expression Br J Haematol 1996 93: 898–902

    Article  CAS  PubMed  Google Scholar 

  81. Filippovich I, Sorokina N, Khanna KK, Lavin MF . Butyrate induced apoptosis in lymphoid cells preceded by transient over-expression of HSP70 mRNA Biochem Biophys Res Commun 1994 198: 257–265

    Article  CAS  PubMed  Google Scholar 

  82. Murdoch WJ . Temporal relationships between stress protein induction, progesterone withdrawal, and apoptosis in corpora lutea of ewes treated with prostaglandin F2 alpha J Anim Sci 1995 73: 1789–1792

    Article  CAS  PubMed  Google Scholar 

  83. Furlini G, Vignoli M, Re MC, Gibellini D, Ramazzotti E, Zauli G, La Placa M . Human immunodeficiency virus type 1 interaction with the membrane of CD4+ cells induces the synthesis and nuclear translocation of 70K heat shock protein J Gen Virol 1994 75: 193–199

    Article  CAS  PubMed  Google Scholar 

  84. Finkel T . Oxygen radicals and signaling Curr Opin Cell Biol 1998 10: 248–253

    Article  CAS  PubMed  Google Scholar 

  85. Floyd RA . Oxidative damage to behavior during aging Science 1991 254: 1597

    Article  CAS  PubMed  Google Scholar 

  86. Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA . Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone Proc Natl Acad Sci USA 1991 88: 3633–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Becker J, Mezger V, Courgeon AM, Best-Belpomme M . On the mechanism of action of H2O2 in the cellular stress Free Radic Res Commun 1991 12–13: 455–460

    Article  Google Scholar 

  88. Troll W . Prevention of cancer by agents that suppress oxygen radical formation Free Radic Res Commun 1991 12–13: 751–757

    Article  Google Scholar 

  89. Lennon SV, Martin SJ, Cotter TG . Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli Cell Prolif 1991 24: 203–214

    Article  CAS  PubMed  Google Scholar 

  90. Albina JE, Cui S, Mateo RB, Reichner JS . Nitric oxide-mediated apoptosis in murine peritoneal macrophages J Immunol 1993 150: 5080–5085

    CAS  PubMed  Google Scholar 

  91. Escargueil I, Negre-Salvayre A, Pieraggi MT, Salvayre R . Oxidized low density lipoproteins elicit DNA fragmentation of cultured lymphoblastoid cells FEBS Lett 1992 305: 155–159

    Article  CAS  PubMed  Google Scholar 

  92. McGowan AJ, Ruiz-Ruiz MC, Gorman AM, Lopez-Rivas A, Cotter TG . Reactive oxygen intermediate(s) (ROI): common mediator(s) of poly(ADP- ribose)polymerase (PARP) cleavage and apoptosis FEBS Lett 1996 392: 299–303

    Article  CAS  PubMed  Google Scholar 

  93. Gorman A, McGowan A, Cotter TG . Role of peroxide and superoxide anion during tumour cell apoptosis FEBS Lett 1997 404: 27–33

    Article  CAS  PubMed  Google Scholar 

  94. Li PF, Dietz R, von Harsdorf R . p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2 EMBO J 1999 18: 6027–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Slater AF, Nobel CS, Maellaro E, Bustamante J, Kimland M, Orrenius S . Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis Biochem J 1995 306: 771–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hedley DW, McCulloch EA, Minden MD, Chow S, Curtis J . Antileukemic action of buthionine sulfoximine: evidence for an intrinsic death mechanism based on oxidative stress Leukemia 1998 12: 1545–1552

    Article  CAS  PubMed  Google Scholar 

  97. Furuke K, Sasada T, Ueda-Taniguchi Y, Yamauchi A, Inamoto T, Yamaoka Y, Masutani H, Yodoi J . Role of intracellular redox status in apoptosis induction of human T-cell leukemia virus type I-infected lymphocytes by 13-cis-retinoic acid Cancer Res 1997 57: 4916–4923

    CAS  PubMed  Google Scholar 

  98. Lindquist S . The heat-shock response Annu Rev Biochem 1986 55: 1151–1191

    Article  CAS  PubMed  Google Scholar 

  99. Jaattela M . Overexpression of major heat shock protein hsp70 inhibits tumor necrosis factor-induced activation of phospholipase A2 J Immunol 1993 151: 4286–4294

    CAS  PubMed  Google Scholar 

  100. Simon MM, Reikerstorfer A, Schwarz A, Krone C, Luger TA, Jaattela M, Schwarz T . Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release J Clin Invest 1995 95: 926–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Halliwell B . Oxidants and human disease: some new concepts FASEB J 1987 1: 358–364

    Article  CAS  PubMed  Google Scholar 

  102. Chant ID, Rose PE, Morris AG . Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry Br J Haematol 1995 90: 163–168

    Article  CAS  PubMed  Google Scholar 

  103. Santarosa M, Favaro D, Quaia M, Galligioni E . Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients Eur J Cancer 1997 33: 873–877

    Article  CAS  PubMed  Google Scholar 

  104. Ralhan R, Kaur J . Differential expression of Mr 70,000 heat shock protein in normal, premalignant, and malignant human uterine cervix Clin Cancer Res 1995 1: 1217–1222

    CAS  PubMed  Google Scholar 

  105. Richards FM, Watson A, Hickman JA . Investigation of the effects of heat shock and agents which induce a heat shock response on the induction of differentiation of HL-60 cells Cancer Res 1988 48: 6715–6720

    CAS  PubMed  Google Scholar 

  106. Sliutz G, Karlseder J, Tempfer C, Orel L, Holzer G, Simon MM . Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy Br J Cancer 1996 74: 172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hug H, Enari M, Nagata S . No requirement of reactive oxygen intermediates in Fas-mediated apoptosis FEBS Lett 1994 351: 311–313

    Article  CAS  PubMed  Google Scholar 

  108. Yu BP . Cellular defenses against damage from reactive oxygen species Physiol Rev 1994 74: 139–162

    Article  CAS  PubMed  Google Scholar 

  109. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W . Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation J Biol Chem 1992 267: 5317–5323

    Article  CAS  PubMed  Google Scholar 

  110. Buttke TM, Sandstrom PA . Oxidative stress as a mediator of apoptosis Immunol Today 1994 15: 7–10

    Article  CAS  PubMed  Google Scholar 

  111. Richter C, Kass GE . Oxidative stress in mitochondria: its relationship to cellular Ca2+ homeostasis, cell death, proliferation, and differentiation Chem Biol Interact 1991 77: 1–23

    Article  CAS  PubMed  Google Scholar 

  112. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY . Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance J Biol Chem 1997 272: 18033–18037

    Article  CAS  PubMed  Google Scholar 

  113. Buzzard KA, Giaccia AJ, Killender M, Anderson RL . Heat shock protein 72 modulates pathways of stress-induced apoptosis J Biol Chem 1998 273: 17147–17153

    Article  CAS  PubMed  Google Scholar 

  114. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M . Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases EMBO J 1998 17: 6124–6134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee YJ, Corry PM . Metabolic oxidative stress-induced HSP70 gene expression is mediated through SAPK pathway. Role of Bcl-2 and c-Jun NH2-terminal kinase J Biol Chem 1998 273: 29857–29863

    Article  CAS  PubMed  Google Scholar 

  116. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME . Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis Science 1995 270: 1326–1331

    Article  CAS  PubMed  Google Scholar 

  117. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y . Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways Science 1997 275: 90–94

    Article  CAS  PubMed  Google Scholar 

  118. Hainaut P, Milner J . Interaction of heat-shock protein 70 with p53 translated in vitro: evidence for interaction with dimeric p53 and for a role in the regulation of p53 conformation EMBO J 1992 11: 3513–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Koskinen PJ, Sistonen L, Evan G, Morimoto R, Alitalo K . Nuclear colocalization of cellular and viral myc proteins with HSP70 in myc-overexpressing cells J Virol 1991 65: 842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jaattela M, Wissing D, Bauer PA, Li GC . Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity EMBO J 1992 11: 3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pratt WB . The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase Annu Rev Pharmacol Toxicol 1997 37: 297–326

    Article  CAS  PubMed  Google Scholar 

  122. Scheibel T, Buchner J . The Hsp90 complex – a super-chaperone machine as a novel drug target Biochem Pharmacol 1998 56: 675–682

    Article  CAS  PubMed  Google Scholar 

  123. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP . Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent Cell 1997 89: 239–250

    Article  CAS  PubMed  Google Scholar 

  124. Blagosklonny MV, Toretsky J, Bohen S, Neckers L . Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90 Proc Natl Acad Sci USA 1996 93: 8379–8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM . Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf- 1-MEK-mitogen-activated protein kinase signalling pathway Mol Cell Biol 1996 16: 5839–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. An WG, Schnur RC, Neckers L, Blagosklonny MV . Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity Cancer Chemother Pharmacol 1997 40: 60–64

    Article  CAS  PubMed  Google Scholar 

  127. Thornberry NA, Lazebnik Y . Caspases: enemies within Science 1998 281: 1312–1316

    Article  CAS  PubMed  Google Scholar 

  128. Gianni M, de The H . In acute promyelocytic leukemia NB4 cells, the synthetic retinoid CD437 induces contemporaneously apoptosis, a caspase-3-mediated degradation of PML/RARalpha protein and the PML retargeting on PML-nuclear bodies Leukemia 1999 13: 739–749

    Article  CAS  PubMed  Google Scholar 

  129. Meinhardt G, Roth J, Totok G, Auner H, Emmerich B, Hass R . Signaling defect in the activation of caspase-3 and PKCdelta in human TUR leukemia cells is associated with resistance to apoptosis Exp Cell Res 1999 247: 534–542

    Article  CAS  PubMed  Google Scholar 

  130. Rheaume E, Cohen LY, Uhlmann F, Lazure C, Alam A, Hurwitz J, Sekaly RP, Denis F . The large subunit of replication factor C is a substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-mediated apoptosis EMBO J 1997 16: 6346–6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Song Q, Burrows SR, Smith G, Lees-Miller SP, Kumar S, Chan DW, Trapani JA, Alnemri E, Litwack G, Lu H, Moss DJ, Jackson S, Lavin MF . Interleukin-1 beta-converting enzyme-like protease cleaves DNA-dependent protein kinase in cytotoxic T cell killing J Exp Med 1996 184: 619–626

    Article  CAS  PubMed  Google Scholar 

  132. Bokoch GM . Caspase-mediated activation of PAK2 during apoptosis: proteolytic kinase activation as a general mechanism of apoptotic signal transduction? Cell Death Differ 1998 5: 637–645

    Article  CAS  PubMed  Google Scholar 

  133. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM . Conversion of Bcl-2 to a Bax-like death effector by caspases Science 1997 278: 1966–1968

    Article  CAS  PubMed  Google Scholar 

  134. Widmann C, Gibson S, Johnson GL . Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals J Biol Chem 1998 273: 7141–7147

    Article  CAS  PubMed  Google Scholar 

  135. Kumar S, Colussi PA . Prodomains–adaptors–oligomerization: the pursuit of caspase activation in apoptosis Trends Biochem Sci 1999 24: 1–4

    Article  CAS  PubMed  Google Scholar 

  136. Cryns V, Yuan J . Proteases to die for Genes Dev 1998 12: 1551–1570

    Article  CAS  PubMed  Google Scholar 

  137. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM . FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex Cell 1996 85: 817–827

    Article  CAS  PubMed  Google Scholar 

  138. Boldin MP, Goncharov TM, Goltsev YV, Wallach D . Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death Cell 1996 85: 803–815

    Article  CAS  PubMed  Google Scholar 

  139. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation Science 1998 281: 1305–1308

    Article  CAS  PubMed  Google Scholar 

  140. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME . Two CD95 (APO-1/Fas) signaling pathways EMBO J 1998 17: 1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X . Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 (see comments) Cell 1997 90: 405–413

    Article  CAS  PubMed  Google Scholar 

  142. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD . The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis Science 1997 275: 1132–1136

    Article  CAS  PubMed  Google Scholar 

  143. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade Cell 1997 91: 479–489

    Article  CAS  PubMed  Google Scholar 

  144. Zou H, Li Y, Liu X, Wang X . An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9 J Biol Chem 1999 274: 11549–11556

    Article  CAS  PubMed  Google Scholar 

  145. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E . HSP27 inhibits cytochrome c-dependent activation of procaspase-9 FASEB J 1999 13: 2061–2070

    Article  CAS  PubMed  Google Scholar 

  146. Green DR, Reed JC . Mitochondria and apoptosis Science 1998 281: 1309–1312

    Article  CAS  PubMed  Google Scholar 

  147. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A . The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling J Cell Biol 1998 140: 1485–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McCarthy NJ, Whyte MK, Gilbert CS, Evan GI . Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak J Cell Biol 1997 136: 215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Berndt C, Mopps B, Angermuller S, Gierschik P, Krammer PH . CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4(+) T cells Proc Natl Acad Sci USA 1998 95: 12556–12561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S . Caspase-independent cell killing by Fas-associated protein with death domain J Cell Biol 1998 143: 1353–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lavoie JN, Nguyen M, Marcellus RC, Branton PE, Shore GC . E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk J Cell Biol 1998 140: 637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lesage S, Steff AM, Philippoussis F, Page M, Trop S, Mateo V, Hugo P . CD4+ CD8+ thymocytes are preferentially induced to die following CD45 cross-linking, through a novel apoptotic pathway J Immunol 1997 159: 4762–4771

    CAS  PubMed  Google Scholar 

  153. Sohn HW, Choi EY, Kim SH, Lee IS, Chung DH, Sung UA, Hwang DH, Cho SS, Jun BH, Jang JJ, Chi JG, Park SH . Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing's sarcoma cells Am J Pathol 1998 153: 1937–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T-T, Yu VL, Miller DK . Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis Nature 1995 376: 37–43

    Article  CAS  PubMed  Google Scholar 

  155. Freeman BC, Myers MP, Schumacher R, Morimoto RI . Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1 EMBO J 1995 14: 2281–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM . Modulation of cell death by Bcl-XL through caspase interaction Proc Natl Acad Sci USA 1998 95: 554–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G . Bcl-2 inhibits the mitochondrial release of an apoptogenic protease J Exp Med 1996 184: 1331–1341

    Article  CAS  PubMed  Google Scholar 

  158. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G . Mitochondrial release of caspase-2 and -9 during the apoptotic process J Exp Med 1999 189: 381–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kroemer G, Dallaporta B, Resche-Rigon M . The mitochondrial death/life regulator in apoptosis and necrosis Annu Rev Physiol 1998 60: 619–642

    Article  CAS  PubMed  Google Scholar 

  160. Liu X, Kim CN, Yang J, Jemmerson R, Wang X . Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c Cell 1996 86: 147–157

    Article  CAS  PubMed  Google Scholar 

  161. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC . Bax directly induces release of cytochrome c from isolated mitochondria Proc Natl Acad Sci USA 1998 95: 4997–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G . Molecular characterization of mitochondrial apoptosis-inducing factor Nature 1999 397: 441–446

    Article  CAS  PubMed  Google Scholar 

  163. Lorenzo HK, Susin SA, Penninger J, Kroemer G . Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death Cell Death Differ 1999 6: 516–524

    Article  CAS  PubMed  Google Scholar 

  164. Ichas F, Mazat JP . From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state Biochim Biophys Acta 1998 1366: 33–50

    Article  CAS  PubMed  Google Scholar 

  165. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G . Mitochondrial control of nuclear apoptosis J Exp Med 1996 183: 1533–1544

    Article  CAS  PubMed  Google Scholar 

  166. Zhu L, Ling S, Yu XD, Venkatesh LK, Subramanian T, Chinnadurai G, Kuo TH . Modulation of Mitochondrial Ca(2+) Homeostasis by Bcl-2 J Biol Chem 1999 274: 33267–33273

    Article  CAS  PubMed  Google Scholar 

  167. Polla BS, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A . Mitochondria are selective targets for the protective effects of heat shock against oxidative injury Proc Natl Acad Sci USA 1996 93: 6458–6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bossy-Wetzel E, Newmeyer DD, Green DR . Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization EMBO J 1998 17: 37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ . Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death Nature 1990 348: 334–336

    Article  CAS  PubMed  Google Scholar 

  170. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ . Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes Cell 1991 67: 879–888

    Article  CAS  PubMed  Google Scholar 

  171. Bissonnette RP, Echeverri F, Mahboubi A, Green DR . Apoptotic cell death induced by c-myc is inhibited by bcl-2 Nature 1992 359: 552–554

    Article  CAS  PubMed  Google Scholar 

  172. Miyashita T, Reed JC . bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs Cancer Res 1992 52: 5407–5411

    CAS  PubMed  Google Scholar 

  173. Vanhaesebroeck B, Reed JC, De Valck D, Grooten J, Miyashita T, Tanaka S, Beyaert R, Van Roy F, Fiers W . Effect of bcl-2 proto-oncogene expression on cellular sensitivity to tumor necrosis factor-mediated cytotoxicity Oncogene 1993 8: 1075–1081

    CAS  PubMed  Google Scholar 

  174. Itoh N, Tsujimoto Y, Nagata S . Effect of bcl-2 on Fas antigen-mediated cell death J Immunol 1993 151: 621–627

    CAS  PubMed  Google Scholar 

  175. Jaattela M, Benedict M, Tewari M, Shayman JA, Dixit VM . Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells Oncogene 1995 10: 2297–2305

    CAS  PubMed  Google Scholar 

  176. Robertson JD, Datta K, Kehrer JP . Bcl-xL overexpression restricts heat-induced apoptosis and influences hsp70, bcl-2, and Bax protein levels in FL5.12 cells Biochem Biophys Res Commun 1997 241: 164–168

    Article  CAS  PubMed  Google Scholar 

  177. Foghsgaard L, Jaattela M . The ability of BHRF1 to inhibit apoptosis is dependent on stimulus and cell type J Virol 1997 71: 7509–7517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival Science 1998 281: 1322–1326

    Article  CAS  PubMed  Google Scholar 

  179. Chao DT, Korsmeyer SJ . BCL-2 family: regulators of cell death Annu Rev Immunol 1998 16: 395–419

    Article  CAS  PubMed  Google Scholar 

  180. Reed JC . Bcl-2 family proteins Oncogene 1998 17: 3225–3236

    Article  PubMed  Google Scholar 

  181. Hill ME, MacLennan KA, Cunningham DC, Vaughan Hudson B, Burke M, Clarke P, Di Stefano F, Anderson L, Vaughan Hudson G, Mason D, Selby P, Linch DC . Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin's lymphoma: a British National Lymphoma Investigation Study Blood 1996 88: 1046–1051

    Article  CAS  PubMed  Google Scholar 

  182. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D . High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy Blood 1993 81: 3091–3096

    Article  CAS  PubMed  Google Scholar 

  183. Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ . Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome Leukemia 1996 10: 456–459

    CAS  PubMed  Google Scholar 

  184. Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, Morimoto RI, Reed JC . BAG-1 modulates the chaperone activity of Hsp70/Hsc70 EMBO J 1997 16: 4887–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K, Knee D, Scudiero D, Tudor G, Miller GJ, Miyashita T, Yamada M, Reed JC . Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG- 1 and its variants in normal tissues and tumor cell lines Cancer Res 1998 58: 3116–3131

    CAS  PubMed  Google Scholar 

  186. McKenna SL, Padua RA . Multidrug resistance in leukaemia Br J Haematol 1997 96: 659–674

    Article  CAS  PubMed  Google Scholar 

  187. Zwelling LA . Topoisomerase II as a target of antileukemia drugs: a review of controversial areas Hematol Pathol 1989 3: 101–112

    CAS  PubMed  Google Scholar 

  188. Izquierdo MA, Shoemaker RH, Flens MJ, Scheffer GL, Wu L, Prather TR, Scheper RJ . Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines Int J Cancer 1996 65: 230–237

    Article  CAS  PubMed  Google Scholar 

  189. Kasimir-Bauer S, Ottinger H, Meusers P, Beelen DW, Brittinger G, Seeber S, Scheulen ME . In acute myeloid leukemia, coexpression of at least two proteins, including P-glycoprotein, the multidrug resistance-related protein, bcl-2, mutant p53, and heat-shock protein 27, is predictive of the response to induction chemotherapy Exp Hematol 1998 26: 1111–1117

    CAS  PubMed  Google Scholar 

  190. Wei YQ, Zhao X, Kariya Y, Teshigawara K, Uchida A . Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells Cancer Immunol Immunother 1995 40: 73–78

    Article  CAS  PubMed  Google Scholar 

  191. Mairesse N, Horman S, Mosselmans R, Galand P . Antisense inhibition of the 27 kDa heat shock protein production affects growth rate and cytoskeletal organization in MCF-7 cells Cell Biol Int 1996 20: 205–212

    Article  CAS  PubMed  Google Scholar 

  192. Creagh EM, Carmody RJ, Cotter TG . HSP70 inhibits caspase-dependent and -independent apoptosis in Jurkat T cells Exp Cell Res 2000 (in press)

Download references

Acknowledgements

We would like to acknowledge the Health Research Board of Ireland, Enterprise Ireland and the Children's Leukaemia Research Project for their financial support. We are also grateful to Dr RJ Carmody for the helpful comments and advice.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creagh, E., Sheehan, D. & Cotter, T. Heat shock proteins – modulators of apoptosis in tumour cells. Leukemia 14, 1161–1173 (2000). https://doi.org/10.1038/sj.leu.2401841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401841

Keywords

This article is cited by

Search

Quick links