Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Notchi and EBV

Intracellular forms of human NOTCH1 interact at distinctly different levels with RBP-Jkappa in human B and T cells

Abstract

The cellular transcriptional repressor RBP-Jκ associates with the Epstein–Barr virus nuclear antigens (EBNAs) determined to be essential for transformation of human primary B lymphocytes. It was demonstrated through genetic analysis that interaction between the viral transactivator EBNA2 and RBP-Jκ is essential for EBV immortalization of primary B lymphocytes. We have shown that the association of RBP-Jκ with intracellular NOTCH1 differs significantly in B and T cells. Immunoprecipitation analyses with antibodies to both the intracellular forms of NOTCH1 and to RBP-Jκ demonstrated that little or no RBP-Jκ is associated with NOTCH1 in B cell lines compared to the RBP-Jκ associated with NOTCH1 in T cell lines and was further demonstrated in human primary lymphocytes. Additionally, EBNA2 can compete with intracellular NOTCH1 for binding to GST-RBP-Jκ in vitro. Northern blot for the cellular gene hairy enhancer of split (HES1) demonstrated that HES1 is upregulated in the EBV transformed lymphoblastoid cells expressing high levels of EBNA2 and in a T cell line SupT1 overexpressing intracellular activated NOTCH1. Hence, EBNA2 may be able to compete for the available pool of RBP-Jκ more effectively in human B cells than in T cells and provides a possible explanation for the ability of EBV to potently and efficiently infect and immortalize human B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Reynolds TC, Smith SD, Sklar J . Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the β T cell receptor gene in human lymphoblastic neoplasms Cell 1987 50: 107–117

    Article  CAS  Google Scholar 

  2. Ellisen LW, Bird J, West D, Soreng A, Reynolds T, Smith S, Sklar J . TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms Cell 1991 66: 649–661

    Article  CAS  Google Scholar 

  3. Weinmaster G, Roberts VJ, Lemke G . A homolog of Drosophila Notch expressed during mammalian development Development 1991 113: 199–205

    CAS  PubMed  Google Scholar 

  4. Aster J, Pear W, Hasserjian R, Erba H, Davi F, Luo B, Scott M, Baltimore D, Sklar J . Functional analysis of the TAN-1 gene, a human homolog of Drosophila notch Cold Spring Harbor Sym Quant Biol 1994 59: 125–136

    Article  CAS  Google Scholar 

  5. Aster JC, Robertson E, Hasserjian R, Turner J, Kieff E, Sklar J . Oncogenic forms of NOTCH1 lacking either the primary binding site for RBP-Jkappa or nuclear localization sequences retain the ability to associate with RBP-Jkappa and activate transcription J Biol Chem 1997 272: 11336–11343

    Article  CAS  Google Scholar 

  6. Pear WS, Aster J, Scott M, Hasserjian R, Soffer B, Sklar J, Baltimore D . Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles J Exp Med 1996 183: 2283–2291

    Article  CAS  Google Scholar 

  7. Rebay I, Fortini ME, Artavanis-Tsakonas S . Analysis of phenotypic abnormalities and cell fate changes caused by dominant activated and dominant negative forms of the Notch receptor in Drosophila development CR Acad Sci III 1993 316: 1097–1123

    CAS  Google Scholar 

  8. Fortini ME, Rebay I, Caron L, Artavanis-Tsakonas S . An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye Nature 1993 365: 555–557

    Article  CAS  Google Scholar 

  9. Coffman CR, Skoglund P, Harris W, Kinter C . Expression of an extracellular deletion of Notch diverts cell fates in Xenopus embryos Cell 1993 73: 659–671

    Article  CAS  Google Scholar 

  10. Lindsell CE, Boulter J, DiSibio G, Grossler A, Weinmaster G . Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development Mol Cell Neurosci 1996 8: 14–27

    Article  CAS  Google Scholar 

  11. Austin CP, Feldman D, Ida J, Cepko C . Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch Development 1995 121: 3637–3650

    CAS  PubMed  Google Scholar 

  12. Matsunami N, Hamaguchi Y, Yamamoto Y, Kuze K, Kangawa K, Matsuo H, Kawaichi M, Honjo T . A protein binding to the Jκ recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif Nature (London) 1989 342: 934–937

    Article  CAS  Google Scholar 

  13. Dou S, Zeng X, Cortes P, Erdjument-Bromage H, Tempst P, Honjo T, Vales L . The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor Mol Cell Biol 1994 14: 3310–3319

    Article  CAS  Google Scholar 

  14. Henkel T, Ling P, Hayward S, Peterson M . Mediation of Epstein–Barr virus EBNA2 transactivation by recombination signal-binding protein Jκ Science 1994 265: 92–95

    Article  CAS  Google Scholar 

  15. Grossman S, Johannsen E, Tong X, Yalamanchili R, Kieff E . The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein Proc Natl Acad Sci USA 1994 91: 7568–7572

    Article  CAS  Google Scholar 

  16. Yochem J, Greenwald I . glp-1 and lin-12, genes implicated in distinct cell–cell interactions in C. elegans, encode similar transmembrane proteins Cell 1989 58: 553–563

    Article  CAS  Google Scholar 

  17. Fortini ME, Artavanis-Tsakonas S . The suppressor of hairless protein participates in notch receptor signaling Cell 1994 79: 273–282

    Article  CAS  Google Scholar 

  18. Bailey AM, Posakony JW . Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity Genes Dev 1995 9: 2609–2622

    Article  CAS  Google Scholar 

  19. Lecourtois M, Schweisguth F . The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling Genes Dev 1995 9: 2598–2608

    Article  CAS  Google Scholar 

  20. Lambie EJ, Kimble J . Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions Development 1991 112: 231–240

    CAS  PubMed  Google Scholar 

  21. Christensen S, Kodoyianni V, Bosenberg M, Friedman L, Kimble J . lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H) Development 1996 122: 1373–1383

    CAS  PubMed  Google Scholar 

  22. Ling PD, Rawlins DR, Hayward SD . The Epstein–Barr viral immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein Proc Natl Acad Sci USA 1993 90: 9237–9241

    Article  CAS  Google Scholar 

  23. Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson M, Hayward S . Truncated mammalian Notch1 activates CBF1/RBPJκ-repressed genes by a mechanism resembling that of Epstein–Barr virus EBNA2 Mol Cell Biol 1996 16: 952–959

    Article  CAS  Google Scholar 

  24. Zimber-Strobl U, Strobl L, Meitinger C, Heinrichs R, Sakai T, Furukawa T, Honjo T, Bornkamm G . Epstein–Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J kappa, the homologue of Drosophila suppressor of hairless EMBO J 1994 13: 4973–4982

    Article  CAS  Google Scholar 

  25. Sakai T, Taniguchi Y, Tamura K, Minoguchi S, Fukura T, Strobl L, Zimber-Strobl U, Bornkamm G, Honjo T . Functional replacement of the intracellular region of the Notch1 receptor by Epstein–Barr virus nuclear antigen 2 J Virol 1998 72: 6034–6039

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T . Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H) Curr Biol 1995 5: 1416–1423

    Article  CAS  Google Scholar 

  27. Yalamanchili R, Tong X, Grossman S, Johannsen E, Mosialos G, Kieff E . Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV Virology 1994 204: 634–641

    Article  CAS  Google Scholar 

  28. Johannsen E, Koh E, Mosialos G, Tong X, Kieff E, Grossman S . Epstein–Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by Jκ and PU.1 J Virol 1995 69: 253–262

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hasserjian RH, Aster J, Davi F, Weinberg D, Sklar J . Modulated expression of NOTCH1 during thymic development Blood 1996 88: 970–976

    CAS  PubMed  Google Scholar 

  30. Robertson ES, Grossman S, Johannsen E, Miller C, Lin J, Tomkinson B, Kieff E . Epstein–Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa J Virol 1995 69: 3108–3116

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith SD, McFall P, Morgan R, Link M, Hecht F, Clearly M, Sklar J . Long-term growth of malignant thymocytes in vitro Blood 1989 73: 2182–2187

    CAS  PubMed  Google Scholar 

  32. Robertson ES, Lin J, Kieff E . The amino terminal domains of Epstein–Barr nuclear proteins 3A, 3B, and 3C interact with RBPJκ J Virol 1996 70: 3068–3074

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jarriault S, Brou C, Logeat F, Schroeter E, Kopan R, Israel A . Signaling downstream of activated mNotch Nature 1995 377: 355–358

    Article  CAS  Google Scholar 

  34. Artavanis-Tsakonas S, Matsuno K, Fortini ME . Notch signaling Science 1995 268: 225–232

    Article  CAS  Google Scholar 

  35. Wang F, Kikutani H, Tsang S, Kishimoto T, Kieff E . Epstein–Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element J Virol 1991 65: 4101–4106

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen JI, Wang F, Mannick J, Kieff E . Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation Proc Natl Acad Sci USA 1989 86: 9558–9562

    Article  CAS  Google Scholar 

  37. Waltzer L, Logeat F, Brou C, Israel A, Sergeant A, Manet E . The human Jκ recombination signal sequence binding protein (RBP-Jκ) targets the Epstein–Barr virus EBNA2 protein to its DNA responsive elements EMBO J 1994 13: 5633–5638

    Article  CAS  Google Scholar 

  38. Hsieh JJ, Hayward SD . Masking of the CBF1/RBPJ kappa transcriptional repression domain by the Epstein–Barr virus EBNA2 Science 1995 268: 560–563

    Article  CAS  Google Scholar 

  39. Ling PD, Hayward SD . Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJκ J Virol 1995 69: 1944–1950

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Marshall D, Sample C . Epstein–Barr virus nuclear antigen 3C is a transcriptional regulator J Virol 1995 69: 3624–3630

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao B, Marshall DR, Sample CE . A conserved domain of the Epstein–Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jkappa J Virol 1996 70: 4228–4236

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Busseau I, Diederich R, Xu T, Artavanis-Tsakonas S . A member of the Notch group of interacting loci, deltex encodes a cytoplasmic basic protein Genetics 1994 136: 585–596

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Diederich RJ, Matsuno K, Hing H, Artavanis-Tsakonas S . Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway Development 1994 120: 473–481

    CAS  PubMed  Google Scholar 

  44. Matsuno K, Eastman D, Mitsiades T, Quinn A, Carcanciu M, Ordentlich P, Kadesh T, Artavanis-Tsakonas S . Human deltex is a conserved regulator of Notch signaling Nat Genet 1998 19: 74–78

    Article  CAS  Google Scholar 

  45. Johannsen E, Miller C, Grossman S, Kieff E . EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJκ in Epstein–Barr virus-transformed B lymphocytes J Virol 1996 70: 4179–4183

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ESR is a Scholar of the Leukemia Society of America. This work was supported by grants from the Leukemia Society of America, the American Heart Association (to ESR) and National Cancer Institute Grants CA66849 (to JCA), CA47006 (to EDK), CA62450 (to JS) and CA072150 (to ESR).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callahan, J., Aster, J., Sklar, J. et al. Intracellular forms of human NOTCH1 interact at distinctly different levels with RBP-Jkappa in human B and T cells. Leukemia 14, 84–92 (2000). https://doi.org/10.1038/sj.leu.2401630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401630

Keywords

This article is cited by

Search

Quick links