Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dating topography of the Sierra Nevada, California, using apatite (U–Th)/He ages

Abstract

The upward motion of rock masses relative to the Earth's surface has been documented for most of the main mountain belts using thermochronological and petrological techniques. More fundamental to the physical processes of mountain building, however, is the motion of the Earth's surface itself, which remains elusive1. Here we describe a technique for estimating the age of topographic relief by mapping the low-temperature thermal structure imparted by river incision using the ages of apatites determined from their uranium, thorium and helium contents. The technique exploits horizontal variations in temperature in the shallow crust that result from range-normal river drainages2,3, because cooling beneath ancient river valleys occurs earlier than beneath intervening ridges. Our results from the Sierra Nevada, California, indicate that two of the modern transverse drainages, the Kings and the San Joaquin, had developed deep canyons by the Late Cretaceous period, suggesting that the high topography of the range is 50–60 million years older than generally thought4,5,6.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Thermal history of rock samples below periodic topography.
Figure 2: Study area.
Figure 3: (U–Th)/He ages along range-parallel profile.

References

  1. England, P. C. & Molnar, P. Surface uplift, uplift of rocks and exhumation of rocks. Geology 18, 1173–1177 (1990).

    ADS  Article  Google Scholar 

  2. Mancktelow, N. S. & Grasemann, B. Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270, 167–195 (1997).

    ADS  Article  Google Scholar 

  3. Stüwe, K., White, L. & Brown, R. The influence of eroding topography on steady-state geotherms. Application to fission track analysis. Earth Planet. Sci. Lett. 124, 63–74 (1994).

    ADS  Article  Google Scholar 

  4. Huber, N. K. Amount and timing of late Cenozoic uplift and tilt of the central Sierra Nevada, California — Evidence from the upper San Joaquin River basin. US Geol. Surv. Prof. Pap. 1197, 1–28 (1981).

    Google Scholar 

  5. Unruh, J. R. The uplift of the Sierra Nevada and implications for late Cenozoic epeirogeny in the western Cordillera. Geol. Soc. Am. Bull. 103, 1395–1404 (1991).

    ADS  Article  Google Scholar 

  6. Axelrod, D. I. in Integrated Earth and Environmental Evolution of the Southwestern U.S.(eds Ernst, W.G. & Nelson, C. A.) 70–79 (Bellweather, Columbia, MD, (1998).

    Google Scholar 

  7. Turcotte, D. L. & Schubert, G. Geodynamics(Wiley, New York, (1982)).

    Google Scholar 

  8. Birch, F. Flow of heat in the Front Range, Colorado. Geol. Soc. Am. Bull. 61, 567–630 (1950).

    ADS  CAS  Article  Google Scholar 

  9. Zeitler, P. K., Herczig, A. L., McDougall, I. & Honda, M. U-Th-He dating of apatite: a potential thermochronometer. Geochim. Cosmochim. Acta 51, 2865–2868 (1987).

    ADS  CAS  Article  Google Scholar 

  10. Wolf, R. A., Farley, K. A. & Silver, L. T. Helium diffusion and low temperature thermochronometry of apatite. Geochim. Cosmochim. Acta 60, 4231–4240 (1996).

    ADS  CAS  Article  Google Scholar 

  11. Wolf, R. A., Farley, K. A. & Kass, D. M. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chem. Geol. 148, 105–114 (1998).

    ADS  CAS  Article  Google Scholar 

  12. Lachenbruch, A. H. & Sass, J. H. in The Earth's Crust; Its Nature and Physical Properties(eds Heacock, J.G. et al.) 626–675 (Am. Geophys. Union, Washington DC, (1977)).

    Google Scholar 

  13. Saltus, R. W. & Lachenbruch, A. H. Thermal evolution of the Sierra Nevada: implications of new heat flow data. Tectonics 10, 325–344 (1991).

    ADS  Article  Google Scholar 

  14. Ague, J. J. & Brimhall, G. H. Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: Effects of assimilation, crustal thickness, and depth of crystallization. Geol. Soc. Am. Bull. 100, 912–927 (1988).

    ADS  CAS  Article  Google Scholar 

  15. Dumitru, T. A. Subnormal Cenozoic geothermal gradients in the extinct Sierra Nevada magmatic arc: consequences of Laramide and post-Laramide shallow-angle subduction. J. Geophys. Res. 95, 4925–4941 (1990).

    ADS  Article  Google Scholar 

  16. House, M. A., Wernicke, B. P., Farley, K. A. & Dumitru, T. A. Cenozoic thermal evolution of the central Sierra Nevada, CA from (U-Th)/He thermochronometry. Earth Planet. Sci. Lett. 151, 167–179 (1997).

    ADS  CAS  Article  Google Scholar 

  17. Diment, W. H. & Urban, T. C. Average elevation map of the conterminous United States (Gilluly averaging method). US Geol. Surv. Geophys. Invest. Map 933, (1981).

  18. Small, E. E. & Anderson, R. S. Geomorphically driven Late Cenozoic rock uplift in the Sierra Nevada, California. Science 270, 277–280 (1995).

    ADS  CAS  Article  Google Scholar 

  19. Wernicke, B.et al. Origin of high mountains in the continents: the southern Sierra Nevada. Science 271, 190–193 (1996).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  20. Wolfe, J. A. An analysis of present-day terrestrial lapse rates in western conterminous United States and their significance to paleoaltitudinal estimates. US Geol. Surv. Bull. 1964, 35 (1992).

    Google Scholar 

  21. Wolfe, J. A., Schorn, H. E., Forest, C. E. & Molnar, P. Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science 276, 1672–1675 (1997).

    CAS  Article  Google Scholar 

  22. Ducea, M. N. & Saleeby, J. B. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: Evidence from xenolith thermobarometry. J. Geophys. Res. 101, 8229–8244 (1996).

    ADS  CAS  Article  Google Scholar 

  23. Ducea, M. N. & Saleeby, J. B. The age and origin of a thick mafic-ultramafic root from beneath the Sierra Nevada batholith: Part I: Geochronology. Contrib. Mineral. Petrol.(in the press).

  24. Saleeby, J. B. & Busby-Spera, C. in The Cordilleran Orogen: Conterminous U.S.(eds Burchfiel, B. C., Lipman, P. W. & Zoback, M. L.) 107–168 (Geol. Soc. Am. DNAG G3, Boulder, (1992)).

    Google Scholar 

  25. Park, S. K., Hirasuna, B., Jiracek, G. R. & Kinn, C. Magnetotelluric evidence of lithospheric mantle thinning beneath the southern Sierra Nevada. J. Geophys. Res. 101, 16241–16255 (1996).

    ADS  CAS  Article  Google Scholar 

  26. Farley, K. A., Wolf, R. A. & Silver, L. T. The effects of long alpha-stopping distances on (U-Th)/He dates. Geochim. Cosmochim. Acta 60, 4223–4230 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is part of the Southern Sierra Nevada Continental Dynamics Project, supported by NSF's Continental Dynamics Program. We thank M. Ducea and J. Saleeby for permission to discuss their results before publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha A. House.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

House, M., Wernicke, B. & Farley, K. Dating topography of the Sierra Nevada, California, using apatite (U–Th)/He ages. Nature 396, 66–69 (1998). https://doi.org/10.1038/23926

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23926

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing