Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Notch signalling controls pancreatic cell differentiation


The pancreas contains both exocrine and endocrine cells, but the molecular mechanisms controlling the differentiation of these cell types are largely unknown. Despite their endodermal origin, pancreatic endocrine cells share several molecular characteristics with neurons1,2,3,4,5, and, like neurons in the central nervous system6,7, differentiating endocrine cells in the pancreas appear in a scattered fashion within a field of progenitor cells8,9. This indicates that they may be generated by lateral specification through Notch signalling6,7. Here, to test this idea, we analysed pancreas development in mice genetically altered at several steps in the Notch signalling pathway. Mice deficient for Delta-like gene 1 (Dll1)10 or the intracellular mediator RBP-Jκ11 showed accelerated differentiation of pancreatic endocrine cells. A similar phenotype was observed in mice over-expressing neurogenin 3(ngn 3)12 or the intracellular form of Notch3 (ref. 13) (a repressor of Notch signalling). These data provide evidence that ngn3 acts as pro-endocrine gene and that Notch signalling is critical for the decision between theendocrine and progenitor/exocrine fates in the developing pancreas.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: ngn3 is expressed and functions as a pro-endocrine gene during pancreatic development.
Figure 2: Notch signalling components are expressed in the developing pancreas.
Figure 3: Lack of RBP-Jκ and Dll1 leads to precocious pancreatic endocrine differentiation.
Figure 4: Repressed Notch signalling obstructs pancreatic epithelial branching and exocrine differentiation.


  1. Pictet, R. L., Rall, L. B., Phelps, P. & Rutter, W. J. The neural crest and the origin of the insulin-producing and other gastrointestinal hormone producing cells. Science 191, 191–192 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Fontaine, J. & Le Douarin, N. M. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neurectodermal origin of the cells of the APUD series. J. Embryol. Exp. Morphol. 41, 209–222 (1977).

    CAS  PubMed  Google Scholar 

  3. Le Douarin, N. M. On the origin of pancreatic endocrine cells. Cell 53, 169–171 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Slack, J. M. W. Developmental biology of the pancreas. Development 121, 1569–1580 (1995).

    CAS  PubMed  Google Scholar 

  5. Edlund, H. Transcribing pancreas. Diabetes 47, 1817–1823 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Lewis, J. Neurogenic genes and vertebrate neurogenesis. Curr. Op. Neurobiol. 6, 3–10 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Beatus, P. & Lendahl, U. Notch and neurogenesis. J. Neurosci. Res. 54, 125–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Pictet, R. & Rutter, WJ. in Handbook of Physiology (eds Steiner, D. F. & Frenkel, N.) 25–66 (Williams and Wilkins, Washington, DC, 1972).

    Google Scholar 

  9. Ahlgren, U., Pfaff, S., Jessel, T. M., Edlund, T. & Edlund, H. Independent requirement for ISL1 in the formation of the pancreatic mesenchyme and islet cells. Nature 385, 257–260 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hrabe de Angelis, M., McIntyrell, J. & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue Dll1. Nature 386, 717–721 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Oka, C. et al. Disruption of the mouse RBPJk gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  PubMed  Google Scholar 

  12. Sommer, L., Ma, Q. & Anderson, D. J. Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Lardelli, M., Williams, R., Mitsiadis, T. & Lendahl, U. Expression of the Notch 3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development. Mech. Dev. 59, 177–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, Q., Kintner, C. & Anderson, D. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J. L. & Anderson, D. J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranialsensory ganglia. Neuron 20, 469–482 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Fode, C. et al. The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20, 483–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Thor, S., Ericson, J., Brannstrom, T. & Edlund, T. The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7, 881–889 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Apelqvist, & & å., & Ahlgren, U. & Edlund, H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr. Biol. 7, 801–804 (1997).

  19. Upchurch, B. H., Aponte,,, G. W. & Liter, A. B. Peptide YY expression is an early event in colonic endocrine cell differentiation: evidence from normal and transgenic mice. Development 120, 245–252 (1994).

    CAS  PubMed  Google Scholar 

  20. Naya, F. J., Stellrecht, C. M. & Tsai, M. J. Tissue-specific regulation of the insulin gene by a novel basic helix–loop–helix transcription factor. Genes Dev. 9, 1009–1019 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, J. E. et al. Conversion of Xenopus into neurons by NeuroD, a basic helix–loop–helix protein. Science 268, 836–844 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Naya, F. J. et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11, 2323–2334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitsiadis, T. A., Henrique, D., Thesleff, I. & Lendahl, U. Mouse Serrate-1 expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-4. Development 124, 1473–1483 (1997).

    CAS  PubMed  Google Scholar 

  24. Mitsiadis, T. A., Hirsinger, E., Lendahl, U. & Goridis, C. Delta-Notch signalling in odontogenesis: correlation with cytodifferentiation and evidence for feedback regulation. Dev. Biol. 204, 420–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Ishibashi, M. et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix–loop–helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 15, 3136–3148 (1995).

    Article  Google Scholar 

  26. Beatus, P., Lundkvist, J., Öberg, C. & Lendahl, U. The Notch 3 intracellular domain represses Notch-1mediated activation through Hairy/Enhancer of split (HES) promoters. Development 126, 3925–3935 (1999).

    CAS  PubMed  Google Scholar 

  27. Krapp, A. et al. The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix–loop–helix protein. EMBO J. 15, 4317–4329 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krapp, A. et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 12, 3752–3763 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hogan, B., Constantini, F. & Lacey, E. in Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbour Lab. Press, New York, 1994).

    Google Scholar 

  30. Ohlsson, H., Karlsson, K. & Edlund, T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 12, 4251–4259 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank K. Falk, U. B. Backman, U. Valtersson and I. Berglund for technical assistance; T. Edlund for critical reading and comments; and members of our laboratories for helpful discussions. This work was supported by grants from the Swedish Medical Research Council and the Juvenile Diabetes Foundation, New York (to H.E.)

Author information

Authors and Affiliations


Corresponding author

Correspondence to Helena Edlund.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Apelqvist, Å., Li, H., Sommer, L. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing