Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chronology, causes and progression of the Messinian salinity crisis

Abstract

The Messinian salinity crisis is widely regarded as one of the most dramatic episodes of oceanic change of the past 20 or so million years (13). Earliest explanations were that extremely thick evaporites were deposited in a deep and desiccated Mediterranean basin that had been repeatedly isolated from the Atlantic Ocean1,2, but elucidation of the causes of the isolation — whether driven largely by glacio-eustatic or tectonic processes — have been hampered by the absence of an accurate time frame. Here we present an astronomically calibrated chronology for the Mediterranean Messinian age based on an integrated high-resolution stratigraphy and ‘tuning’ of sedimentary cycle patterns to variations in the Earth's orbital parameters. We show that the onset of the Messinian salinity crisis is synchronous over the entire Mediterranean basin, dated at 5.96 ± 0.02 million years ago. Isolation from the Atlantic Ocean was established between 5.59 and 5.33 million years ago, causing a large fall in Mediterranean water level followed by erosion (5.59–5.50 million years ago) and deposition (5.50–5.33 million years ago) of non-marine sediments in a large ‘Lago Mare’ (Lake Sea) basin. Cyclic evaporite deposition is almost entirely related to circum-Mediterranean climate changes driven by changes in the Earth's precession, and not to obliquity-induced glacio-eustatic sea-level changes. We argue in favour of a dominantly tectonic origin for the Messinian salinity crisis, although its exact timing may well have been controlled by the 400-kyr component of the Earth's eccentricity cycle.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Astronomical calibration of Messinian pre-evaporite sequences.
Figure 2: Late Neogene sea-floor spreading-rate histories.

References

  1. 1

    Hsü, K. J., Ryan, W. B. F. & Cita, M. B. Late Miocene desiccation of the Mediterranean. Nature 242, 240–244 (1973).

    ADS  Article  Google Scholar 

  2. 2

    Ryan, W. B. F.et al. Initial Reports of the Deep Sea Drilling Project Vol. 13(US Govt Printing Office, Washington, 1973).

    Google Scholar 

  3. 3

    Hilgen, F. J.et al. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett. 136, 495–510 (1995).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Clauzon, G., Suc, J.-P., Gautier, F., Berger, A. & Loutre, M.-F. Alternate interpretation of the Messinian salinity crisis: Controversy resolved? Geology 24, 363–366 (1996).

    ADS  Article  Google Scholar 

  5. 5

    Butler, R. W. H., Lickorish, W. H., Grasso, M., Pedley, H. M. & Ramberti, L. Tectonics and sequence stratigraphy in Messinian basins, Sicily: constraints on the initiation and termination of the Mediterranean ‘salinity crisis’. Geol. Soc. Am. Bull 107, 425–439 (1995).

    ADS  Article  Google Scholar 

  6. 6

    Hodell, D. A., Benson, R. H., Kent, D. V., Boersma, A. & Rakic-El Bied, K. Magnetostratigraphic, biostratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from the Salé Briqueterie (northwest Morocco): A high-resolution chronology for the Messinian stage. Paleoceanography 9, 835–855 (1994).

    ADS  Article  Google Scholar 

  7. 7

    Wijermars, R. Neogene tectonics in the Western Mediterranean may have caused the Messinian Salinity Crisis and an associated glacial event. Tectonophysics 148, 211–219 (1988).

    ADS  Article  Google Scholar 

  8. 8

    Vai, G. B. in Miocene Stratigraphy: An Integrated Approach (eds Montanari, A., Odin, G. S. & Coccioni, R.) 463–476 (Elsevier Science, Amsterdam, 1997).

    Google Scholar 

  9. 9

    Decima, A. & Wezel, F. Late Miocene evaporites of the Central Sicilian Basin. Init. Rep. DSDPLeg 13, 1234–1240 (1973).

  10. 10

    Lourens, L. J.et al. Evaluation of the Pliocene to early Pleistocene astronomical time scale. Paleoceanography 11, 391–413 (1996).

    ADS  Article  Google Scholar 

  11. 11

    Shackleton, N. J., Crowhurst, S., Hagelberg, T., Pisias, N. G. & Schneider, D. A. Anew late Neogene time scale: Application to leg 138 sites. Proc. ODP Sci. Res. 138, 73–101 (1995).

    Google Scholar 

  12. 12

    Sprovieri, R., Di Stefano, E., Caruso, A. & Bonomo, S. High resolution stratigraphy in the Messinian Tripoli Formation in Sicily. Paleopelagos 6, 415–435 (1996).

    Google Scholar 

  13. 13

    Sierro, F. J.et al. Messinian pre-evaporite sapropels and precession-induced oscillations in western Mediterranean climate. Mar. Geol. 153, 137–146 (1999).

    ADS  Article  Google Scholar 

  14. 14

    Laskar, J., Joutel, F. & Boudin, F. Orbital, precessional, and insolation quantities for the Earth from −20 Myr to +10 Myr. Astron. Astrophys. 270, 522–533 (1993).

    ADS  Google Scholar 

  15. 15

    Cande, S. C. & Kent, D. V. Anew geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 97, 13917–13951 (1992).

    ADS  Article  Google Scholar 

  16. 16

    Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 (1995).

    ADS  Article  Google Scholar 

  17. 17

    Hooper, P. W. P. & Weaver, P. P. E. Paleoceanographic significance of Late Miocene to early Pliocene planktonic foraminifers at deep sea drilling project site 609. Init. Rep. DSDP 94, 925–934 (1987).

    Google Scholar 

  18. 18

    Raffi, I., Rio, D., d'Atri, A., Fornaciari, E. & Rocchetti, S. Quantitative distribution patterns and biomagnetostratigraphy of middle and late Miocene calcareous nannofossils from equatorial Indian and Pacific Oceans (Legs 115, 130 and 138). Proc. ODP Sci. Res. 138, 479–503 (1995).

    Google Scholar 

  19. 19

    Backman, J. & Raffi, I. Calibration of Miocene nannofossil events to orbitally tuned cyclostratigraphies from Ceara Rise. Proc. ODP. Sci. Res. 154, 83–99 (1997).

    Google Scholar 

  20. 20

    Shackleton, N. J. & Crowhurst, S. Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. Proc. ODP. Sci. Res. 154, 69–82 (1997).

    Google Scholar 

  21. 21

    Wilson, D. S. Confirmation of the astronomical calibration of the magnetic polarity timescale from sea-floor spreading rates. Nature 364, 788–790 (1993).

    ADS  Article  Google Scholar 

  22. 22

    Cox, A. & Engebretson, D. C. Change in motion of the Pacific plate at 5 Ma. Nature 313, 472–474 (1985).

    ADS  Article  Google Scholar 

  23. 23

    Wilson, D. S. Confidence intervals for motion and deformation of the Juan de Fuca. J. Geophys. Res. 98, 16053–16071 (1993).

    ADS  Article  Google Scholar 

  24. 24

    Cande, S. C., Raymond, C. A., Stock, J. & Haxby, W. F. Geophysics of the Pittman Fracture Zone and Pacific-Antarctic plate motions during the Cenozoic. Science 270, 947–953 (1995).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Dronkert, H. Evaporite models and sedimentology of Messinian and Recent evaporites. GUA Papers of GeologySeries 1, Vol. 24 (1985).

  26. 26

    McCulloch, M. T. & De Deckker, P. Sr isotope constraints on the Mediterranean environment at the end of the Messinian salinity crisis. Nature 342, 62–65 (1989).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Shackleton, N. J., Hall, M. A. & Plate, D. Pliocene stable isotope stratigraphy of Site 846. Proc. ODP Sci. Res. 138, 337–355 (1995).

    Google Scholar 

  28. 28

    Garcés, M., Krijgsman, W. & Agustií, J. Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): implications for the Messinian evolution of the eastern Betics. Earth Planet. Sci. Lett. 163, 69–81 (1998).

    ADS  Article  Google Scholar 

  29. 29

    Krijgsman, W.et al. Late Neogene evolution of the Taza-Guercif Basin (Rifian Corridor; Morocco) and implications for the Messinian salinity crisis. Mar. Geol. 153, 147–160 (1999).

    ADS  Article  Google Scholar 

  30. 30

    Mascle, G. & Heimann, K. O. Geological observations from Messinian and lower Pliocene outcrops in Sicily. Mem. Soc. Geol. It. 16, 127–140 (1976).

    Google Scholar 

  31. 31

    Norman, S. E. & Chase, C. G. Uplift of the shores of the western Mediterranean due to Messinian desiccation and flexural isostasy. Nature 322, 450–451 (1983).

    ADS  Article  Google Scholar 

  32. 32

    Grindlay, N. R., Weiland, C. M. & Fox, P. J. Eos 76, F573 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank C. G. Langereis, W.-J. Zachariasse and M.-F. Loutre for comments on the manuscript. This work was supported by GOA/NWO, NSF, DGCYT and Fundacion Areces.

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Krijgsman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krijgsman, W., Hilgen, F., Raffi, I. et al. Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652–655 (1999). https://doi.org/10.1038/23231

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing