Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implications of Torsional Potential of Retinal Isomers for Visual Excitation

A Corrigendum to this article was published on 07 May 1971

Abstract

BECAUSE 11-cis retinal is the chromophore of the visual pigment in vertebrate rods, and its isomerization to the all-trans form (Ia) is known to occur during visual excitation1–4, the properties of the retinal isomers are of considerable interest. Although it has long been assumed that non-bonded repulsions in 11-cis retinal distort the polyene chain, the details of the ground state geometry have not been determined, nor has the experimental spectrum been correlated unequivocally with the excited states. In this communication, we present a theoretical ground state potential function with a form which may help to explain some of the unusual spectral characteristics of the retinal isomers when in solution or incorporated into the native visual pigment1–4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wald, G., Science, 162, 230 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Hubbard, R., Bounds, D., and Yoshizawa, T., Cold Spring Harbor Symp. Quant. Biol., 30, 301 (1965).

    Article  CAS  Google Scholar 

  3. Abrahamson, E. W., and Ostroy, S. E., Prog. Biophys. Mol. Biol., 17, 179 (1967).

    Article  CAS  Google Scholar 

  4. Hubbard, R., and Wald, G., in Structural Chemistry and Molecular Biology (edit. by Rich, A. and Davidson, N.) (Freeman, San Francisco, 1968).

    Google Scholar 

  5. Williams, D. W., J. Chem. Phys., 45, 3770 (1966).

    Article  ADS  CAS  Google Scholar 

  6. Nash, H., J. Theoret. Biol., 22, 314 (1969).

    Article  CAS  Google Scholar 

  7. Sheraga, H. A., Adv. Phys. Org. Chem., 6, 103 (1968).

    Google Scholar 

  8. Williams, J. E., Stang, P. J., and von R. Schleyer, P., Ann. Rev. Phys. Chem., 19, 531 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Allinger, N. L., Hirsch, J. A., Miller, M. A., and Tymanski, I. J., J. Amer. Chem. Soc., 91, 1199 (1968).

    Article  Google Scholar 

  10. Allinger, N. L., Hirsch, J. A., Miller, M. A., and Tymanski, I. J., J. Amer. Chem. Soc., 91, 5773 (1968).

    Article  Google Scholar 

  11. Wiesenfeld, J. R., and Abrahamson, E. W., Photochem. Photobiol., 8, 487 (1968).

    Article  CAS  Google Scholar 

  12. Imuzaka, K., and Becker, R. S., Nature, 219, 389 (1968).

    Article  ADS  Google Scholar 

  13. Patel, D., Nature, 221, 826 (1969).

    ADS  Google Scholar 

  14. Sperling, W., and Rafferty, C., Nature, 224, 591 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Jutkowitz, L., Nature, 184, 614 (1959).

    Article  Google Scholar 

  16. Loeb, J. N., Brown, P. K., and Wald, G., Nature, 184, 617 (1959).

    CAS  Google Scholar 

  17. Oroshnik, W., and Mebane, A. D., J. Amer. Chem. Soc., 76, 5719 (1954).

    Article  CAS  Google Scholar 

  18. Dorfman, L., Chem. Rev., 53, 47 (1953).

    Article  CAS  Google Scholar 

  19. Allinger, N., and Miller, M. A., J. Amer. Chem. Soc., 86, 2811 (1964).

    Article  CAS  Google Scholar 

  20. Oroshnik, W., Brown, P., Hubbard, R., and Wald, G., Proc. US Nat. Acad. Sci., 42, 578 (1956).

    Article  ADS  CAS  Google Scholar 

  21. Grellmann, K. H., Livingston, R., and Pratt, D., Nature, 193, 1258 (1962).

    Article  ADS  CAS  Google Scholar 

  22. Grellmann, K. H., Livingston, R., and Pratt, D., Photochem. Photobiol., 3, 121 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HONIG, B., KARPLUS, M. Implications of Torsional Potential of Retinal Isomers for Visual Excitation. Nature 229, 558–560 (1971). https://doi.org/10.1038/229558a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/229558a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing