Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Missing lithotroph identified as new planctomycete

Abstract

With the increased use of chemical fertilizers in agriculture, many densely populated countries face environmental problems associated with high ammonia emissions. The process of anaerobic ammonia oxidation (‘anammox’) is one of the most innovative technological advances in the removal of ammonia nitrogen from waste water1,2. This new process combines ammonia and nitrite directly into dinitrogen gas3. Until now, bacteria capable of anaerobically oxidizing ammonia had never been found and were known as “lithotrophs missing from nature”4. Here we report the discovery of this missing lithotroph and its identification as a new, autotrophic member of the order Planctomycetales, one of the major distinct divisions of the Bacteria5. The new planctomycete grows extremely slowly, dividing only once every two weeks. At present, it cannot be cultivated by conventional microbiological techniques. The identification of this bacterium as the one responsible for anaerobic oxidation of ammonia makes an important contribution to the problem of unculturability.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Transmission electron micrograph of anammox biofilms.
Figure 2: Fluorescent in situ hybridization of purified anammox cells.
Figure 3: Phylogenetic position of the lithotroph responsible for anaerobic ammonium oxidation within the domain Bacteria, based on 16S rRNA phylogeny.

References

  1. Jetten, M. S. M., Horn, S. J. & van Loosdrecht, M. C. M. Towards a more sustainable wastewater treatment system. Wat. Sci. Tech. 35, 171–180 (1997).

    CAS  Article  Google Scholar 

  2. Strous, M., Van Gerven, E., Ping, Z., Kuenen, J. G. & Jetten, M. S. M. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation process. Water Res. 31, 1955–1962 (1997).

    CAS  Article  Google Scholar 

  3. Van de Graaf, A. A., de Bruin, P., Robertson, L. A., Jetten, M. S. M. & Kuenen, J. G. Metabolic pathway of anaerobic ammonium oxidation on basis of15N-studies in a fluidized bed reactor. Microbiology 143, 2415–2421 (1997).

    CAS  Article  PubMed  Google Scholar 

  4. Broda, E. Two kinds of lithotrophs missing in nature. Z. Allgem. Mikrobiol. 17, 491–493 (1977).

    CAS  Article  Google Scholar 

  5. Schlesner, H. & Stackebrandt, E. Assignment of the genera Planctomyces and Pirella to a new family Planctomycetaceae fam. nov. and description of the order Planctomycetales ord. nov. Syst. Appl. Microbiol. 8, 174–176 (1986).

    Article  Google Scholar 

  6. Fuerst, J. A. & Webb, R. I. Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc. Natl Acad. Sci. USA 88, 8184–8188 (1991).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Lindsay, M. R., Webb, R. I. & Fuerst, J. A. Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology 143, 739–748 (1997).

    CAS  Article  PubMed  Google Scholar 

  8. Fuerst, J. A. The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141, 1493–1506 (1995).

    CAS  Article  PubMed  Google Scholar 

  9. Vergin, K. L.et al. Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. Appl. Environ. Microbiol. 64, 3075–3078 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Neef, A., Amann, R. I., Schlesner, H. & Schleifer, K. H. Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144, 3257–3266 (1998).

    CAS  Article  PubMed  Google Scholar 

  11. Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Byers, H. K., Stackebrandt, E., Hayward, C. & Blackall, L. L. Molecular investigation of a microbial mat associated with the Great Artesian Basin. FEMS Microbiol. Ecol. 25, 391–403 (1998).

    CAS  Article  Google Scholar 

  13. Zarda, B. et al. Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch. Microbiol. 168, 185–192 (1997).

    CAS  Article  Google Scholar 

  14. Liesack, W., König, H., Schlesner, H. & Hirsch, P. Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella/Planctomyces group. Arch. Microbiol. 145, 361–366 (1986).

    CAS  Article  Google Scholar 

  15. König, E., Schlesner, H. & Hirsch, P. Cell wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch. Microbiol. 138, 200–205 (1984).

    Article  Google Scholar 

  16. Strous, M., Heijnen, J. J., Kuenen, J. G. & Jetten, M. S. M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidising microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596 (1998).

    CAS  Article  Google Scholar 

  17. Fuqua, C. & Greenberg, E. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 1, 183–189 (1998).

    CAS  Article  PubMed  Google Scholar 

  18. Ludwig, W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998).

    CAS  Article  PubMed  Google Scholar 

  19. Delong, E. F., Franks, D. G. & Alldredge, A. L. Phylogenetic diversity of aggregate-attached versus free-living marine bacterial assemblages. Limnol. Oceanogr. 38, 924–934 (1993).

    ADS  Article  Google Scholar 

  20. Fuerst, J. A. et al. Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn Penaeus monodon. Appl. Environ. Microbiol. 63, 254–262 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Van de Graaf, A. A., Debruijn, P., Robertson, L. A., Jetten, M. S. M. & Kuenen, J. G. Autotrophic growth of anaerobic ammonium oxidizing microorganisms in a fluidized bed reactor. Microbiology 142, 2187–2196 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Raghoebarsing and J. Schalk for technical assistance; M. Wagner (TU Munich, Germany) for instruction on fluorescent in situ hybridization; and the Foundation of Applied Research (STW) for financial support. J.A.F. and R.W. acknowledge the support of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike S. M. Jetten.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strous, M., Fuerst, J., Kramer, E. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999). https://doi.org/10.1038/22749

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22749

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing