Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a Function for the UAA Codon in vivo

Abstract

THE three known and well characterized amber suppressors1 are almost certainly transfer RNAs altered by single base substitutions in their anticodons, the altered anticodon being the complement to the amber codon (UAG)1–6. Studies on the conversion of these amber suppressors to ochre suppressors, presumed still to be charged with the same amino-acids, showed that at least these three ochre suppressors are probably also transfer RNAs with altered anticodons5,6. As a result of previous work, we had at our disposal cells containing no suppressor (su), a class 1 amber suppressor presumed to insert serine, and a class 1 ochre suppressor also presumed to insert serine. Cells containing a class 1 amber suppressor were derived from an su parent cell, probably by a single base change in the DNA information specifying the anticodon of a seryl-transfer RNA. Cells containing a class 1 ochre suppressor were derived from cells containing a class 1 amber suppressor by suppressor conversion5. The growth characteristics of su cells and cells containing a class 1 amber suppressor are always similar, and differ from those for cells containing a class 1 ochre suppressor. The latter cells usually have reduced growth rates, support the growth of a smaller number of amber mutants of T4 phage, and give rise to reduced burst sizes of T4+. These effects of the presence of an ochre suppressor could result from anticodon–codon (UUA–UAA) interactions if UAA codons are normally used as chain terminators during translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Garen, A., Science, 160, 149 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Landy, A., Abelson, J., Goodman, H. M., and Smith, J. D., J. Mol. Biol., 29, 457 (1967).

    Article  CAS  Google Scholar 

  3. Goodman, H. M., Abelson, J., Landy, A., Brenner, S., and Smith, J. D., Nature, 217, 1019 (1968).

    Article  ADS  CAS  Google Scholar 

  4. Andoh, T., and Ozeki, H., Proc. US Nat. Acad. Sci., 59, 792 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Person, S., and Osborn, M., Proc. US Nat. Acad. Sci., 60, 1030 (1968).

    Article  ADS  CAS  Google Scholar 

  6. Ohlsson, B. M., Strigini, P. F., and Beckwith, J. R., J. Mol. Biol., 36, 209 (1968).

    Article  CAS  Google Scholar 

  7. Osborn, M., and Person, S., Mutation Res., 4, 504 (1967).

    Article  CAS  Google Scholar 

  8. Person, S., and Bockrath, R. C., Biophys. J., 4, 355 (1964).

    Article  CAS  Google Scholar 

  9. Revel, H. R., Luria, S. E., and Rotman, B., Proc. US Nat. Acad. Sci., 47, 1956 (1961).

    Article  ADS  CAS  Google Scholar 

  10. Alpers, D. H., Appel, S. H., and Tomkins, G. M., J. Biol. Chem., 240, 10 (1965).

    CAS  PubMed  Google Scholar 

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. Biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  12. Appel, S. H., Alpers, D. H., and Tomkins, G. M., J. Mol. Biol., 11, 12 (1965).

    Article  CAS  Google Scholar 

  13. Krieg, R. H., and Stent, G. S., Mol. Gen. Genetics, 103, 274 (1969).

    Article  Google Scholar 

  14. Krieg, R. H., and Stent, G. S., Mol. Gen. Genetics, 103, 294 (1969).

    Article  Google Scholar 

  15. Capecchi, M. R., Proc. US Nat. Acad. Sci., 58, 1144 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Bretscher, M. S., J. Mol. Biol., 34, 131 (1968).

    Article  CAS  Google Scholar 

  17. Scolnick, E., Tompkins, R., Caskey, T., and Nirenberg, M., Proc. US Nat. Acad. Sci., 61, 768 (1968).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KANTOR, G., PERSON, S. & ANDERSEN, F. Evidence for a Function for the UAA Codon in vivo. Nature 223, 535–537 (1969). https://doi.org/10.1038/223535a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/223535a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing