Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determining the Stoichiometry of Photosynthetic Phosphorylation

Abstract

AFTER the discovery of non-cyclic photosynthetic phosphorylation1, investigations in other laboratories2,3 confirmed the observation that one ATP molecule was formed for each pair of electrons (2e) transferred from water to TPN+ or ferricyanide. Later work with these electron acceptors4,5 and with quinones6 added support to the belief that the limit of the P : 2e ratio (μmoles ATP formed per two electrons transferred) is unity. Tris-HCl was used in this early work, and more recent studies using this buffer have confirmed the reported pH optimum of 7.8–8.0 and the P : 2e ratio of 1.0 (ref. 7). With the introduction of new buffers8 and the use of pH values between 8.6 and 8.9, overall P : 2e ratios greater than 1.0 have been observed7–9. Lynn and Brown10, using a different incubation procedure, claim to have obtained high P : 2e ratios with the tris buffer, and Shavit and Avron11 have obtained ratios greater than 1.0 with tris-HCl. On the other hand, Ramirez et al.12 have never-observed P : 2e ratios greater than 1.0 although the pH optima for ferricyanide and TPN+ reduction were 7.7 and 8.5, respectively, in the presence of tris, but were both 8.5 in the presence of ‘Tricine’ (N-tris (hydroxymethyl) methylglycine). The H+ : e (ratio of protons taken up to electrons transported; the value of this H+ : e ratio should equal the number of sites of energy conservation (ATP formation) in the electron transport path) varies strongly with pH showing a maximum value of 6 at pH 6.0 using diquat (N, N-ethylene-2,2-dipyridilium dibromide) as the electron acceptor; a similar variation with pH occurred in ferricyanide reduction with a maximum H+ : e = 4 (ref. 13). An H+ : e ratio of 5 was observed with chloranil as the electron acceptor9. Many different P : 2e and H+ : e ratios have thus been observed depending on the pH, the electron acceptor and the buffer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arnon, D. I., Whatley, F. R., and Allen, M. B., Science, 127, 1026 (1958).

    Article  ADS  CAS  Google Scholar 

  2. Krogmann, D. W., Jagendorf, A. T., and Avron, M., Plant Physiol., 34, 272 (1959).

    Article  CAS  Google Scholar 

  3. Good, N. E., Nature, 188, 661 (1960).

    Article  ADS  CAS  Google Scholar 

  4. Stiller, M., and Vennesland, B., Biochim. Biophys. Acta, 60, 562 (1962).

    Article  CAS  Google Scholar 

  5. Turner, J., Black, C. C., and Gibbs, M., J. Biol. Chem., 237, 577 (1962).

    CAS  Google Scholar 

  6. Trebst, A., and Eck, H., Z. Naturforsch., 166, 455 (1961).

    Article  Google Scholar 

  7. Winget, G. D., Izawa, S., and Good, N. E., Biochem. Biophys. Res. Commun., 21, 438 (1965).

    Article  CAS  Google Scholar 

  8. Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., and Singh, R. M. M., Biochemistry, 5, 467 (1966).

    Article  CAS  Google Scholar 

  9. Izawa, S., Winget, G. D., and Good, N. E., Biochem. Biophys. Res. Commun., 22, 223 (1966).

    Article  CAS  Google Scholar 

  10. Lynn, W. S., and Brown, R. H., J. Biol. Chem., 242, 412, 426 (1967).

    CAS  PubMed  Google Scholar 

  11. Shavit, N., and Avron, M., Biochim. Biophys. Acta, 131, 516 (1967).

    Article  CAS  Google Scholar 

  12. Ramirez, J. M., Del Campo, F. F., and Arnon, D. I., Fed. Proc. (Abstr.), 26, 861 (1967).

    Google Scholar 

  13. Karlish, S. J. D., and Avron, M., Nature, 126, 1107 (1967).

    Article  ADS  Google Scholar 

  14. Arnon, D. I., Losada, M., Whatley, F. R., Tsujimoto, H. Y., Hall, D. O., and Horton, A. A., Proc. US Nat. Acad. Sci., 47, 1314 (1961).

    Article  ADS  CAS  Google Scholar 

  15. Hagihara, B., and Lardy, H. A., J. Biol. Chem., 235, 889 (1960).

    CAS  PubMed  Google Scholar 

  16. Hill, R., and Bendall, F., Nature, 187, 417 (1960).

    Article  ADS  CAS  Google Scholar 

  17. Arnon, D. I., Plant Physiol., 24, 1 (1949).

    Article  CAS  Google Scholar 

  18. Arnon, D. I., Tsujimoto, H. Y., and McSwain, B. D., Nature, 214, 562 (1967).

    Article  ADS  CAS  Google Scholar 

  19. Avron, M., and Jagendorf, A. T., J. Biol. Chem., 234, 1315 (1959).

    CAS  Google Scholar 

  20. Arnon, D. I., in Biological Structure and Function, 2, 339 (edit. by Goodwin, T. W., and Lindberg, O.) (Academic Press, London and New York, 1961).

    Google Scholar 

  21. Jagendorf, A. T., and Margulies, M., Arch. Biochem. Biophys., 90, 184 (1960).

    Article  CAS  Google Scholar 

  22. Vernon, L. P., and Zaugg, W. S., J. Biol. Chem., 235, 2728 (1960).

    CAS  Google Scholar 

  23. Petrack, B., and Lipmann, F., in Light and Life, 621 (edit. by McElroy, W. D., and Glass, B.) (Johns Hopkins Press, Baltimore, 1961).

    Google Scholar 

  24. Avron, M., J. Biol. Chem., 237, 2011 (1962).

    CAS  PubMed  Google Scholar 

  25. Hoch, G., and Martin, I., Biochem. Biophys. Res. Commun., 12, 223 (1963).

    Article  CAS  Google Scholar 

  26. Bennun, A., and Avron, M., Biochim. Biophys. Acta, 109, 117 (1965).

    Article  CAS  Google Scholar 

  27. Carmeli, C., and Avron, M., European J. Biochem., 2, 318 (1967).

    Article  CAS  Google Scholar 

  28. Shavit, N., Skye, G. E., and Boyer, P. D., J. Biol. Chem., 242, 5125 (1967).

    CAS  PubMed  Google Scholar 

  29. Skye, G. E., Shavit, N., and Boyer, P. D., Biochem. Biophys. Res. Commun., 28, 724 (1967).

    Article  CAS  Google Scholar 

  30. Fiske, C. H., and Subbarrow, Y., J. Biol. Chem., 66, 375 (1925).

    CAS  Google Scholar 

  31. Duysens, L. N. M., and Amesz, J., in Comprehensive Biochemistry (edit. by Florkin, M., and Stotz, E. H.), 27, 237 (Elsevier, Amsterdam, 1967).

    Google Scholar 

  32. Izawa, S., and Hind, G., Biochim. Biophys. Acta, 143, 377 (1967).

    Article  CAS  Google Scholar 

  33. Jensen, R. G., and Bassham, J. A., Proc. US Nat. Acad. Sci., 56, 1095 (1966).

    Article  ADS  CAS  Google Scholar 

  34. Kalberer, P. B., Buchanan, B. B., and Arnon, D. I., Proc. US Nat. Acad. Sci., 57, 1542 (1967).

    Article  ADS  CAS  Google Scholar 

  35. Cockburn, W., Baldry, C. W., and Walker, D. A., Biochim. Biophys. Acta, 143, 606 (1967).

    Article  CAS  Google Scholar 

  36. Avron, M., Krogmann, D. W., and Jagendorf, A. T., Biochim. Biophys. Acta, 30, 144 (1958).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HORTON, A., HALL, D. Determining the Stoichiometry of Photosynthetic Phosphorylation. Nature 218, 386–388 (1968). https://doi.org/10.1038/218386a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/218386a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing