Multifractality in human heartbeat dynamics

Article metrics

Abstract

There is evidence that physiological signals under healthy conditions may have a fractal temporal structure1. Here we investigate the possibility that time series generated by certain physiological control systems may be members of a special class of complex processes, termed multifractal, which require a large number of exponents to characterize their scaling properties2,3,4,5,6. We report onevidence for multifractality in a biological dynamical system, the healthy human heartbeat, and show that the multifractal character and nonlinear properties of the healthy heart rate are encoded in the Fourier phases. We uncover a loss of multifractality for a life-threatening condition, congestive heart failure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Visualization of multifractality in the hearbeat.
Figure 2: Heartbeat time series contain densely packed, non-isolated singularities which unavoidably affect each other in the time-frequency decomposition.
Figure 3: Multifractality in healthy dynamics.
Figure 4: Discrimination method based on the multifractal formalism.
Figure 5: Nonlinearity and Fourier phases.

References

  1. 1

    Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. Fractal Physiology(Oxford Univ. Press, New York, (1994).

  2. 2

    Dewey, T. G. Fractals in Molecular Biophysics(Oxford Univ. Press, Oxford, (1997).

  3. 3

    Stanley, H. E. & Meakin, P. Multifractal phenomena in physics and chemistry. Nature 335, 405–409 (1988).

  4. 4

    Vicsek, T. Fractal Growth Phenomena, 2nd edn (World Scientific, Singapore, (1993).

  5. 5

    Takayasu, H. Fractals in the Physical Sciences(Manchester Univ. Press, Manchester, UK, (1997).

  6. 6

    Stanley, H. E. in Fractals and Disordered Systems2nd edn (eds Bunde, A. & Havlin, S.) 1–68 (Springer, Berlin, (1996).

  7. 7

    Shlesinger, M. F. Fractal time and 1/f noise in complex systems. Ann. NY Acad. Sci. 504, 214–228 (1987).

  8. 8

    Malik, M. & Camm, A. J. (eds) Heart Rate Variability(Futura, Armonk, NY, (1995).

  9. 9

    Akselrod, S.et al. Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981).

  10. 10

    Kobayashi, M. & Musha, T. 1/f fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. 29, 456–457 (1982).

  11. 11

    Hausdorff, J. M.et al. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 80, 1448–1457 (1996).

  12. 12

    Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary time series. Chaos 5, 82–87 (1995).

  13. 13

    Hurst, H. E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).

  14. 14

    Vicsek, T. & Barabási, A. L. Multi-affine model for the velocity distribution in fully turbulent flows. J.Phys. A 24, L845–L851 (1991).

  15. 15

    Barabasi, A.-L. & Stanley, H. E. Fractal Concepts in Surface GrowthCh. 24 (Cambridge Univ. Press, Cambridge, (1995).

  16. 16

    Daubechies, I. Ten Lectures on Wavelets(SIAM, Philadelphia, (1992).

  17. 17

    Ivanov, P. Ch.et al. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383, 323–327 (1996).

  18. 18

    Muzy, J. F., Bacry, E. & Arneodo, A. Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 3515–3518 (1991).

  19. 19

    Muzy, J. F., Bacry, E. & Arneodo, A. The multifractal formalism revisited with wavelets. Int. J. Bifurc. Chaos 4, 245–302 (1994).

  20. 20

    Peng, C.-K.et al. Fractal mechanisms and heart rate dynamics: Long-range correlations and their breakdown with disease. J. Electrocardiol. 28, 59–65 (1996).

  21. 21

    Thurner, S., Feurstein, M. C. & Teich, M. C. Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology. Phys. Rev. Lett. 80, 1544–2391 (1998).

  22. 22

    Amaral, L. A. N., Goldberger, A. L., Ivanov, P. Ch. & Stanley, H. E. Scale-independent measures and pathologic cardiac dynamics. Phys. Rev. Lett. 81, 2388–2391 (1998).

  23. 23

    Lefebvre, J.et al. Predictability of normal heart rhythms and deterministic chaos. Chaos 3, 267–276 (1993).

  24. 24

    Yamamoto, Y.et al. Operation Everest II: an indication of deterministic chaos in human heart rate variability at simulated extreme altitude. Biol. Cybern. 69, 205–212 (1993).

  25. 25

    Kanters, J. K., Holstein-Rathlou, N. H. & Agner, E. Lack of evidence for low-dimensional chaos in heart rate variability. J. Cardiovasc. Electrophysiol. 5, 128–137 (1994).

  26. 26

    Sugihara, G., Allan, W., Sobel, D. & Allan, K. D. Nonlinear control of heart rate variability in human infants. Proc. Natl Acad. Sci. USA 93, 2608–2613 (1996).

  27. 27

    Poon, C-S. & Merrill, C. K. Decrease of cardiac chaos in congestive heart failure. Nature 389, 492–495 (1997).

  28. 28

    Meneveau, C. & Sreenivasan, K. R. Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424–1427 (1987).

  29. 29

    Ivanov, P. Ch., Amaral, A. L. N., Goldberger, A. L. & Stanley, H. E. Stochastic feedback and the regulation of biological rhythms. Europhys. Lett. 43, 363–368 (1998).

  30. 30

    Moody, G. B. & Mark, R. G. Development and evaluation of a 2-lead ECG analysis program. Computers Cardiol. 9, 39–44 (1983).

Download references

Acknowledgements

We thank A. Bunde, U. Frisch, J. M. Hausdorff, V. Horváth, H. Kallabis, R.G. Mark, J. Mietus, C.-K. Peng, K. R. Sreenivasan and B. J. West for discussions. We are especially grateful to A. Arneodo and T. Vicsek for advice on the analytical technique and on the text and R. Goldsmith for providing the blind test data. This work was supported by NASA, NIH, FCT/Portugal, and The G. Harold and Leila Y. Mathers Charitable Foundation.

Author information

Correspondence to Plamen Ch. Ivanov.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.