Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds


Much progress has been made in understanding limb development1,2,3. Most genes are expressed equally and in the same pattern in the fore- and hindlimbs, which nevertheless develop into distinct structures3,4,5,6,7,8. The T-box genes Tbx5 and Tbx4, on the other hand, are expressed differently in chick wing (Tbx5) and leg (Tbx4) buds9,10,11,12. Molecular analysis of the optomotor blind gene13, which belongs to the same family of transcription factors, has revealed that this gene is involved in the transdetermination of Drosophila wing and leg imaginal discs14. In addition, expression of Tbx5 and Tbx4 correlates well with the identity of ectopic limb buds induced by fibroblast growth factor4,5,15,16,17,18,19. Thus, it is thought that Tbx5 and Tbx4 might be involved in determining limb identity. Another candidate is the Pitx1 gene, which encodes a bicoid-type homeodomain transcription factor that is expressed in leg buds20,21. Here we determine the importance of these factors in establishing limb identity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Misexpression of Tbx5 and Tbx4 converts the wing/leg identity of limb buds.
Figure 2: Tbx5 and Tbx4 regulate Hoxc9/d9 expression in the developing limb buds.
Figure 3: Limb identities of the extra limbs induced in the flank by the mixed-cell aggregates of Tbx4/FGF8.
Figure 4: The regulatory network of the Tbx5, Tbx4 and Pitx1 genes.
Figure 5: Interactions regulating the wing/leg identity of limb buds.


  1. Coates, M. L. & Cohn, M. Fins, limbs, and tails: outgrowths and axial patterning in vertebrate evolution. BioEssays 20, 371–381 (1998).

    Article  Google Scholar 

  2. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Johnson, R. L. & Tabin, C. J. Molecular models for vertebrate limb development. Cell 90, 979–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Vogel, A., Rodrigues, C. & Izpisua-Belmonte, J. C. Involvement of FGF8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  PubMed  Google Scholar 

  5. Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Nelson, C. al. Analysis of Hox gene expression in the chick limb bud. Development 122, 1449–1466 (1996).

    CAS  PubMed  Google Scholar 

  7. Peterson, R. L., PapenBrock, T., Davda, M. M. & Awgulewitsch, A. The murine Hoxc cluster contains five neighboring AbdB-related Hox genes that show unique spatially coordinated expression in posterior embryonic subregions. Mech. Dev. 47, 253–260 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Cohn, M. al. Hox9 genes and vertebrate limb specification. Nature 387, 97–101 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Papaioannou, V. E. & Silver, L. M. The T-box gene family. BioEssays 20, 9–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Smith, J. Brachyury and the T-box genes. Curr. Opin. Gen. Dev. 7, 474–480 (1997).

    Article  CAS  Google Scholar 

  11. Gibson-Brown, J. al. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech. Dev. 56, 93–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Chapman, D. al. Expression of the T-box family genes, Tbx1–Tbx5, during early mouse development. Dev. Dynam. 206, 379–390 (1996).

    Article  CAS  Google Scholar 

  13. Poeck, B., Hofbauer, A. & Pflugfelder, G. O. Expression of the Drosophila optomotor-blind gene transcript in neuronal and glial cells of the developing nervous system. Development 117, 1017–1029 (1993).

    CAS  PubMed  Google Scholar 

  14. Grimm, S. & Pflugfelder, G. O. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271, 1601–1604 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Cohn, M. al. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739–746 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Ohuchi, al. Correlation of wing-leg identity in ectopic FGF-induced chimeric limbs with the differential expression of chick Tbx5 and Tbx4. Development 125, 51–60 (1998).

    CAS  PubMed  Google Scholar 

  17. Issac, al. Tbx genes and limb identity in chick embryo development. Development 125, 1867–1875 (1998).

    Google Scholar 

  18. Gibson-Brown, J. al. Involvement of T-box genes Tbx2–Tbx5 in vertebrate limb specification and development. Development 125, 2499–2509 (1998).

    CAS  PubMed  Google Scholar 

  19. Logan, M., Simon, H. G. & Tabin, C. Differential regulation of T-box and homeobox transcription factors suggests role in controlling chick limb-type identity. Development 125, 2825–2835 (1998).

    CAS  PubMed  Google Scholar 

  20. Szeto, D. P., Ryan, A. K., O'Connel, S. M. & Rosenfeld, M. G. P-OTX: A PIT-1 interacting homeodomain factor expressed during anterior pituitary gland development. Proc. Natl Acad. Sci. USA 93, 7706–7710 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shang, J., Li, X., Ring, H. Z., Cayton, D. A. & Francke, U. Backfoot, a novel homeobox gene, maps to human chromosome 5 (BFT) and mouse chromosome 13 (Bft). Genomics 40, 108–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Momose, al. Efficient targeting of gene expression in chick embryos by microelectroporation. Dev. Growth Differ. 41(in the press).

  23. Motgan, B. A. & Fekete, D. M. Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol. 51, 185–218 (1996).

    Article  Google Scholar 

  24. Stephens, T. al. Limbness in the early chick embryo lateral plate. Dev. Biol. 133, 1–7 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Stephens, T. al. Evaluation of the chick wing territory as an equipotential selfdifferentiating system. Dev. Dyn. 197, 157–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Wessells, N. K. Tissue Interaction and Development (Benjamin, Menlo Park, (1977).

    Google Scholar 

  27. Ogura, T. & Evans, R. M. Aretinoic acid-triggered cascade of HOXB1 gene activation. Proc. Natl Acad. Sci. USA 92, 387–391 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogura, T. & Evans, R. M. Evidence for two distinct retinoic acid response pathways for HOXB1 gene regulation. Proc. Natl Acad. Sci. USA 92, 392–396 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carroll, R. L. Patterns and Processes of Vertebrate Evolution (Cambridge Univ. Press, Cambridge, UK, (1997).

    Google Scholar 

  30. Wilkinson, D. G. in In Situ Hybridization 75–83 (Oxford Univ. Press, New York, (1993).

    Google Scholar 

Download references


We thank C. Campbell for human TBX2 cDNA plasmid pQE9Eag; J. C. Izpisua-Belmonte for chicken Hoxd9; A. Kuroiwa for chicken Hoxb9 and c9 probes; K. Umesono and R. Yu for critically reading the manuscript and for helpful comments; and T. Momose for technical assistance in the electroporation system. This study was supported by grants from the Ministry of Education, Science, Sports and Culture of Japan, and by special coordination funds for promoting science and technology from the Science and Technology Agency. A.V.-H. was supported by a grant from the Deutsche Forschungsgemeinschaft and a foreign fellowship from the Japan Society for the Promotion of Sciences. This paper is dedicated to K. Umesono.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Toshihiko Ogura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takeuchi, J., Koshiba-Takeuchi, K., Matsumoto, K. et al. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398, 810–814 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing