Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relative reward preference in primate orbitofrontal cortex

Abstract

The orbital part of prefrontal cortex appears to be crucially involved in the motivational control of goal-directed behaviour1,2. Patients with lesions of orbitofrontal cortex show impairments in making decisions about the expected outcome of actions3. Monkeys with orbitofrontal lesions respond abnormally to changes in reward expectations4,5 and show altered reward preferences6. As rewards constitute basic goals of behaviour7, we investigated here how neurons in the orbitofrontal cortex of monkeys process information about liquid and food rewards in a typical frontal task, spatial delayed responding8. The activity of orbitofrontal neurons increases in response to reward-predicting signals, during the expectation of rewards, and after the receipt of rewards. Neurons discriminate between different rewards, mainly irrespective of the spatial and visual features of reward-predicting stimuli and behavioural reactions. Most reward discriminations reflect the animals' relative preference among the available rewards, as expressed by their choice behaviour, rather than physical reward properties. Thus, neurons in the orbitofrontal cortex appear to process the motivational value of rewarding outcomes of voluntary action.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spatial delayed-response task.
Figure 2: Positions of orbitofrontal neurons activated in liquid-reward trials.
Figure 3: Reward rather than spatial or object processing in orbitofrontal neurons.
Figure 4: Coding of relative reward preference in an orbitofrontal neuron.

References

  1. Damasio, AR. Descartes Error (Putnam, New York, 1994).

    Google Scholar 

  2. Rolls, E. T. The orbitofrontal cortex. Phil. Trans. R. Soc. Lond. B 351, 1433–1444 (1996).

    CAS  Article  Google Scholar 

  3. Bechara, A., Damasio, H., Tranel, D. & Anderson, S. W. Dissociation of working memory from decision making within the human prefrontal cortex. J. Neurosci. 18, 428–437 (1998).

    CAS  Article  Google Scholar 

  4. Iversen, S. D. & Mishkin, M. Preservative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp. Brain Res. 11, 376–386 (1970).

    CAS  Article  Google Scholar 

  5. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    ADS  CAS  Article  Google Scholar 

  6. Baylis, L. L. & Gaffan, D. Amygdalectomy and ventromedial prefrontal ablation produce similar deficits in food choice and in simple object discrimination learning for an unseen reward. Exp. Brain Res. 86, 617–622 (1991).

    CAS  Article  Google Scholar 

  7. Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Anim. Learn. Behav. 22, 1–18 (1994).

    Article  Google Scholar 

  8. Jacobsen, C. F. & Nissen, H. W. Studies of cerebral function in primates: IV. The effects of frontal lobe lesions on the delayed alternation habit in monkeys. J. Comp. Physiol. Psychol. 23, 101–112 (1937).

    Article  Google Scholar 

  9. Thorpe, S. J., Rolls, E. T. & Maddison, S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49, 93–115 (1983).

    CAS  Article  Google Scholar 

  10. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcome during learning. Nature Neurosci. 1, 155–159 (1998).

    CAS  Article  Google Scholar 

  11. Critchley, H. G. & Rolls, E. T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1673–1686 (1996).

    CAS  Article  Google Scholar 

  12. Critchley, H. G. & Rolls, E. T. Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J. Neurophysiol. 75, 1659–1672 (1996).

    CAS  Article  Google Scholar 

  13. Schoenbaum, G. & Eichenbaum, H. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J. Neurophysiol. 74, 733–750 (1995).

    CAS  Article  Google Scholar 

  14. Rolls, E. T., Critchley, H. D., Mason, R. & Wakeman, E. A. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J. Neurophysiol. 75, 1970–1981 (1996).

    CAS  Article  Google Scholar 

  15. Tinklepaugh, O. L. An experimental study of representation factors in monkeys. J. Comp. Psychol. 8, 197–236 (1928).

    Article  Google Scholar 

  16. Hollerman, J. R., Tremblay, L. & Schultz, W. Influence of reward expectation on behavior-related neuronal activity in primate striatum. J. Neurophysiol. 80, 947–963 (1998).

    CAS  Article  Google Scholar 

  17. Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J. Neurophysiol. 61, 814–832 (1989).

    CAS  Article  Google Scholar 

  18. Schultz, W., Apicella, P., Scarnati, E. & Ljungberg, T. Neuronal activity in monkey ventral striatum related to the expectation of reward. J. Neurosci. 12, 4595–4610 (1992).

    CAS  Article  Google Scholar 

  19. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    ADS  CAS  Article  Google Scholar 

  20. Kubota, K. & Niki, H. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J. Neurophysiol. 34, 337–347 (1971).

    CAS  Article  Google Scholar 

  21. Funahashi, S., Chafee, M. V. & Goldman-Rakic, P. S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993).

    ADS  CAS  Article  Google Scholar 

  22. Wilson, F. A. W., O'Scalaidhe, S. P. & Goldman-Rakic, P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    ADS  CAS  Article  Google Scholar 

  23. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997).

    CAS  Article  Google Scholar 

  24. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the monkey. J. Neurosci. 16, 5154–5167 (1996).

    CAS  Article  Google Scholar 

  25. Petrides, M. & Pandya, D. N. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J. Comp. Neurol. 273, 52–66 (1988).

    CAS  Article  Google Scholar 

  26. Pandya, D. N. & Yeterian, E. H. Comparison of prefrontal architectures and connections. Phil. Trans. R. Soc. Lond. B 351, 1423–1432 (1996).

    CAS  Article  Google Scholar 

  27. Barbas, H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276, 313–342 (1988).

    CAS  Article  Google Scholar 

  28. Carmichael, S. T. & Price, J. L. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641 (1995).

    CAS  Article  Google Scholar 

  29. Rosenkilde, C. E., Bauer, R. H. & Fuster, J. M. Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Res. 209, 375–394 (1981).

    CAS  Article  Google Scholar 

  30. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. Aebischer, J. Corpataux, A. Gaillard, A. Pisani, A. Schwarz and F.Tinguely for technical assistance. The study was supported by the Swiss NSF (W.S.) and the Fondation pour la Recherche Scientifique de Quebec (L.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Schultz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tremblay, L., Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999). https://doi.org/10.1038/19525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19525

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing