Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A neuronal representation of the location of nearby sounds


Humans can accurately perceive the location of a sound source—not only the direction, but also the distance1,2,3,4,5,6,7,8,9. Sounds near the head, within ducking or reaching distance, have a special saliency. However, little is known about this perception of auditory distance. The direction to a sound source can be determined by interaural differences, and the mechanisms of direction perception have been studied intensively1; but except for studies on echolocation in the bat10, little is known about how neurons encode information on auditory distance. Here we describe neurons in the brain of macaque monkeys (Macaca fascicularis) that represent the auditory space surrounding the head, within roughly 30 cm. These neurons, which are located in the ventral premotor cortex, have spatial receptive fields that extend a limited distance outward from the head.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Responses of bimodal and trimodal neurons in PMv.
Figure 2: Auditory responses of four trimodal neurons to white noise, presented at five amplitudes and three distances from the head.


  1. Blauert, J. Spatial Hearing: The Psychophysics of Human Sound Localization (transl. Allen, J. S.) (MIT Press, Cambridge, Massachusetts, (1997)).

    Google Scholar 

  2. Clifton, R. K., Rochat, P., Robin, D. J. & Berthier, N. E. Multimodal perception in the control of infant reaching. J. Exp. Psychol. Hum. Percept. Perform. 20, 876–886 (1994).

    CAS  Article  Google Scholar 

  3. Coleman, P. D. An analysis of cues to auditory depth perception in free space. Psychol. Bull. 60, 302–315 (1963).

    CAS  Article  Google Scholar 

  4. Coleman, P. D. Dual role of frequency spectrum in determination of auditory distance. J. Acoust. Soc. Am. 44, 631–632 (1968).

    ADS  CAS  Article  Google Scholar 

  5. Edwards, A. A. Accuracy of auditory depth perception. J. Gen. Psychol. 52, 327–329 (1955).

    Article  Google Scholar 

  6. Gamble, E. A. Intensity as a criterion in estimating the distance of sounds. Psychol. Rev. 16, 416–426 (1909).

    Article  Google Scholar 

  7. Gardner, M. B. Distance estimation of 0° or apparent 0°-oriented speech signals in anechoic space. J. Acoust. Soc. Am. 45, 47–53 (1969).

    ADS  CAS  Article  Google Scholar 

  8. Mershon, D. H. & Bowers, J. N. Absolute and relative cues for the auditory perception of egocentric distance. Perception 8, 311–322 (1979).

    CAS  Article  Google Scholar 

  9. von Bekesy, G. Experiments in Hearing (McGraw-Hill, New York, (1960)).

    Google Scholar 

  10. Suga, N. & O'Neill, W. E. Neural axis representing target range in the auditory cortex of the mustache bat. Science 206, 351–353 (1979).

    ADS  CAS  Article  Google Scholar 

  11. Gentilucci, M. et al. Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp. Brain. Res. 71, 475–490 (1988).

    CAS  Article  Google Scholar 

  12. Fogassi, L. et al. Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 76, 141–157 (1996).

    CAS  Article  Google Scholar 

  13. Graziano, M. S. A., Yap, G. S. & Gross, C. G. Coding of visual space by pre-motor neurons. Science 266, 1054–1057 (1994).

    ADS  CAS  Article  Google Scholar 

  14. Graziano, M. S. A., Hu, X. & Gross, C. G. Coding the locations of objects in the dark. Science 277, 239–241 (1997).

    CAS  Article  Google Scholar 

  15. Rizzolatti, G. et al. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav. Brain Res. 2, 147–163 (1981).

    CAS  Article  Google Scholar 

  16. Graziano, M. S. A., Hu, X. & Gross, C. G. Visuo-spatial properties of ventral premotor cortex. J. Neurophysiol. 77, 2268–2292 (1997).

    CAS  Article  Google Scholar 

  17. Ashmead, D. H., LeRoy, D. & Odom, R. D. Perception of the relative distances of nearby sound sources. Percept. Psychophys. 47, 326–331 (1990).

    CAS  Article  Google Scholar 

  18. Mershon, D. H. & King, L. E. Intensity and reverberation as factors in the auditory perception of egocentric distance. Percept. Psychophys. 18, 409–415 (1975).

    Article  Google Scholar 

  19. Coleman, P. D. Failure to localize the source distance of an unfamiliar sound. J. Acoust. Soc. Am. 34, 345–346 (1962).

    ADS  Article  Google Scholar 

  20. Graziano, M. S. A., Fernandez, T. & Gross, C. G. Acomparison of bimodal, visual-tactile neurons in parietal area 7b and ventral premotor cortex of the monkey brain. Neurosci. Abs. 22, 398 (1996).

    Google Scholar 

  21. Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II: Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    CAS  Article  Google Scholar 

  22. Matelli, M., Camarda, R., Glickstein, M. & Rizzolatti, G. Afferent and efferent projections of the inferior area 6 in the macaque monkey. J. Comp. Neurol. 255, 281–298 (1986).

    Article  Google Scholar 

  23. Graziano, M. S. A. & Gross, C. G. Spatial maps for the control of movement. Curr. Opin. Neurobiol. 8, 195–201 (1998).

    CAS  Article  Google Scholar 

  24. Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. The space around us. Science 277, 190–191 (1997).

    CAS  Article  Google Scholar 

  25. Boussaoud, D., Barth, T. M. & Wise, S. P. Effects of gaze on apparent visual responses of frontal cortex neurons. Exp. Brain Res. 93, 423–434 (1993).

    CAS  Article  Google Scholar 

  26. Cohen, J. & P. Cohen, P. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Lawrence Earlbaum Associates, Hillsdale, New Jersey, (1983)).

    Google Scholar 

Download references


We thank E. Olson, X. Hu, S. Alisharan, M. E. Wheeler and V. Gomez for their help during the experiment.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael S. A. Graziano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graziano, M., Reiss, L. & Gross, C. A neuronal representation of the location of nearby sounds. Nature 397, 428–430 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing