Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants

Abstract

When etiolated angiosperm seedlings break through the soil after germination, they are immediately exposed to sunlight, but at this stage they are unable to perform photosynthesis1. In the absence of chlorophyll a and chlorophyll b, two other porphyrin species cooperate as the basic light-harvesting structure of etiolated plants. Protochlorophyllide a and protochlorophyllide b (ref. 2) form supramolecular complexes with NADPH and two closely related NADPH:protochlorophyllide oxidoreductase (POR) proteins—PORA and PORB (ref. 3)—in the prolamellar body of etioplasts. Here we report that these light-harvesting POR–protochlorophyllide complexes, named LHPP, are essential for the establishment of the photosynthetic apparatus and also confer photoprotection on the plant. They collect sunlight for rapid chlorophyll a biosynthesis and, simultaneously, dissipate excess light energy in the bulk of non-photoreducible protochlorophyllide b. Based on this dual function, it seems that LHPP provides the link between skotomorphogenesis and photosynthesis that is required for efficient de-etiolation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Authentic LHPP contains two POR proteins but only one photoactive species of Pchlide.
Figure 2: PORA and PORB bind ZnPPa and ZnPPb, the Zn analogues of Pchlide a and Pchlide b, with different affinities.
Figure 3: Reconstitution of LHPP in vitro.
Figure 4: Reconstituted LHPP catalyses the reduction of ZnPPa to Zn pheophorbide a.
Figure 5: Reconstituted LHPP is a light-harvesting complex, collecting solar energy for the formation of PORB-derived Zn pheophorbide a.
Figure 6: Mixed galacto- and sulpholipids promote the formation of Pchlide650–657 in reconstituted LHPP.

References

  1. 1

    Granick, S. The structural and functional relationship between heme and chlorophyll. Harvey Lect. 44, 220–245 (1950).

    Google Scholar 

  2. 2

    Shedbalkar, V. P., Ioannides, I. M. & Rebeiz, C. A. Chloroplast biogenesis. Detection of monovinyl protochlorophyllide b in plants. J. Biol. Chem. 266, 17151–17157 (1991).

    CAS  PubMed  Google Scholar 

  3. 3

    Holtorf, H., Reinbothe, S., Reinbothe, C., Bereza, B. & Apel, K. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley. Proc. Natl Acad. Sci. USA 92, 3254–3258 (1995).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Griffiths, W. T. Reconstitution of chlorophyll formation by isolated etioplast membranes. Biochem. J. 174, 681–692 (1978).

    CAS  Article  Google Scholar 

  5. 5

    Reinbothe, S. & Reinbothe, C. The regulation of enzymes involved in chlorophyll biosynthesis. Eur. J. Biochem. 237, 323–343 (1995).

    Article  Google Scholar 

  6. 6

    Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994).

    ADS  Article  Google Scholar 

  7. 7

    Palsson, L. O., Spangfort, M. D., Gulbinas, V. & Gillbro, T. Ultrafast chlorophyll b to chlorophyll a excitation energy transfer in the isolated light harvesting complex, LHCII, of green plants: implications for the organisation of chlorophylls. FEBS Lett. 339, 134–138 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Ide, J. P., Klug, D. R., Kühlbrandt, W., Georgi, L. & Porter, G. The state of detergent-solubilized light-harvesting chlorophyll-a/b protein complex as monitored by picosecond time-resolved fluorescence and circular dichroism. Biochim. Biophys. Acta 893, 349–364 (1987).

    CAS  Article  Google Scholar 

  9. 9

    Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. PCR Protocols (Academic, San Diego, (1990).

    Google Scholar 

  10. 10

    Krieg, P. A. & Melton, D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned DNAs. Nucleic Acids Res. 12, 7057–7070 (1984).

    CAS  Article  Google Scholar 

  11. 11

    Apel, K., Santel, H.-J., Redlinger, T. E. & Falk, H. The protochlorophyllide holochrome of barley. Isolation and characterization of the NADPH:protochlorophyllide oxidoreductase. Eur. J. Biochem. 111, 251–258 (1980).

    CAS  Article  Google Scholar 

  12. 12

    Reinbothe, S., Runge, S., Reinbothe, C., van Cleve, B. & Apel, K. Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7, 161–172 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Schoch, S., Helfrich, M., Wiktorsson, B., Sundqvist, C., Rüdiger, W. & Ryberg, M. Photoreduction of protopheophorbide with NADPH-protochlorophyllide oxidoreductase from etiolated wheat (Triticum aestivum). Eur. J. Biochem. 229, 291–298 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Lebedev, N., van Cleve, B., Armstrong, G. A. & Apel, K. Chlorophyll synthesis in a de-etiolated (det340) mutant of Arabidopsis without NADPH-protochlorophyllide (Pchlide) oxidoreductase (POR) A and photoactive Pchlide-F655. Plant Cell 7, 2081–2090 (1995).

    CAS  Article  Google Scholar 

  15. 15

    Ryberg, M. & Sundqvist, C. in Chlorophylls (ed. Scheer, H.) 587–612 (CRC Press, Boca Raton, (1991).

    Google Scholar 

  16. 16

    Ryberg, M., Sandelius, A. S. & Selstam, E. Lipid composition of prolamellar bodies and prothylakoids of wheat etioplasts. Physiol. Planta 57, 555–560 (1983).

    CAS  Article  Google Scholar 

  17. 17

    Armstrong, G. A., Runge, S., Frick, G., Sperling, U. & Apel, K. Identification of protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliania. Plant Physiol. 108, 1505–1517 (1995).

    CAS  Article  Google Scholar 

  18. 18

    von Wettstein, D., Gough, S. & Kannangara, C. G. Chlorophyll biosynthesis. Plant Cell 7, 1039–1057 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Quail, P. H., Boylan, M. T., Parks, B. M., Short, T. W., Xu, Y. & Wagner, D. Phytochromes: photosensory perception and signal transduction. Science 268, 675–680 (1995).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kendrick, R. E. & Kronenberg, H. M. (eds) Photomorphogenesis in Plants (Kluwer, Dordrecht, (1991).

    Google Scholar 

  21. 21

    Schulz, R. et al. Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (POR) of barley (Hordeum vulgare L.) and expression in Escherichia coli. Mol. Gen. Genet. 217, 355–361 (1989).

    CAS  Article  Google Scholar 

  22. 22

    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Reinbothe, C., Apel, K. & Reinbothe, S. Alight-induced protease from barley plastids degrades NADPH:protochlorophyllide oxidoreductase complexed with chlorophyllide. Mol. Cell. Biol. 15, 6206–6212 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Towbin, M., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. USA 76, 4350–4354 (1979).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Schoch for a gift of ZnPPa and ZnPPb. This work is dedicated to R.Mache on the occasion of his 65th birthday.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christiane Reinbothe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reinbothe, C., Lebedev, N. & Reinbothe, S. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397, 80–84 (1999). https://doi.org/10.1038/16283

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing