Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

G2/M checkpoint stringency is a key parameter in the sensitivity of AML cells to genotoxic stress

Abstract

Acute myeloid leukemia (AML) cells exposed to genotoxic agents arrest their cell cycle at the G2/M checkpoint and are inherently chemoresistant. To understand the mechanism of this chemoresistance, we compared the ability of immature CD34+ versus mature CD34− AML cell lines (KG1a and U937, respectively) to recover from a DNA damage-induced cell cycle checkpoint in G2. Here, we report that KG1a cells have a more stringent G2/M checkpoint response than U937 cells. We show that in both cell types, the CDC25B phosphatase participates in the G2/M checkpoint recovery and that its expression is upregulated. Furthermore, we show that CHK1 inhibition by UCN-01 in immature KG1a cells allows checkpoint exit and induces sensitivity to genotoxic agents. Similarly, UCN-01 treatment potentializes genotoxic-induced inhibition of colony formation efficiency of primary leukemic cells from AML patients. Altogether, our results demonstrate that checkpoint stringency varies during the maturation process and indicate that targeting checkpoint mechanisms might represent an attractive therapeutic opportunity for chemoresistant immature AML cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amico D, Barbui AM, Erba E, Rambaldi A, Introna M, Golay J . (2003). Differential response of human acute myeloid leukemia cells to gemtuzumab ozogamicin in vitro: role of Chk1 and Chk2 phosphorylation and caspase 3. Blood 101: 4589–4597.

    Article  CAS  PubMed  Google Scholar 

  • Bansal P, Lazo JS . (2007). Induction of Cdc25B regulates cell cycle resumption after genotoxic stress. Cancer Res 67: 3356–3363.

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J . (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J . (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19: 238–245.

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV . (2006). Target for cancer therapy: proliferating cells or stem cells. Leukemia 20: 385–391.

    Article  CAS  PubMed  Google Scholar 

  • Bouquet F, Muller C, Salles B . (2006). The loss of gammaH2AX signal is a marker of DNA double strand breaks repair only at low levels of DNA damage. Cell Cycle 5: 1116–1122.

    Article  CAS  PubMed  Google Scholar 

  • Boutros R, Dozier C, Ducommun B . (2006). The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18: 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Brezak MC, Quaranta M, Contour-Galcera MO, Lavergne O, Mondesert O, Auvray P et al. (2005). Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of CDC25 phosphatases. Mol Cancer Ther 4: 1378–1387.

    Article  CAS  PubMed  Google Scholar 

  • Bruno AP, Laurent G, Averbeck D, Demur C, Bonnet J, Bettaieb A et al. (1998). Lack of ceramide generation in TF-1 human myeloid leukemic cells resistant to ionizing radiation. Cell Death Differ 5: 172–182.

    Article  CAS  PubMed  Google Scholar 

  • Bugler B, Quaranta M, Aressy B, Brezak MC, Prevost G, Ducommun B . (2006). Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol Cancer Ther 5: 1446–1451.

    Article  CAS  PubMed  Google Scholar 

  • Chini CC, Chen J . (2003). Human claspin is required for replication checkpoint control. J Biol Chem 278: 30057–30062.

    Article  CAS  PubMed  Google Scholar 

  • Chini CC, Chen J . (2006). Repeated phosphopeptide motifs in human Claspin are phosphorylated by Chk1 and mediate Claspin function. J Biol Chem 281: 33276–33282.

    Article  CAS  PubMed  Google Scholar 

  • Chini CC, Wood J, Chen J . (2006). Chk1 is required to maintain claspin stability. Oncogene 25: 4165–4171.

    Article  CAS  PubMed  Google Scholar 

  • Clarke CA, Clarke PR . (2005). DNA-dependent phosphorylation of Chk1 and Claspin in a human cell-free system. Biochem J 388: 705–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clave E, Carosella ED, Gluckman E, Socie G . (1997). Radiation-enhanced expression of interferon-inducible genes in the KG1a primitive hematopoietic cell line. Leukemia 11: 114–119.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C et al. (2004). Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2/M transition. J Cell Sci 117: 2523–2531.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Vidal A, Ysebaert L, Didier C, Betous R, De Toni F, Prade-Houdellier N et al. (2006). Cell adhesion regulates CDC25A expression and proliferation in acute myeloid leukemia. Cancer Res 66: 7128–7135.

    Article  CAS  PubMed  Google Scholar 

  • Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O'Connor PM et al. (2000). The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275: 5600–5605.

    Article  CAS  PubMed  Google Scholar 

  • Humbert O, Hermine T, Hernandez H, Bouget T, Selves J, Laurent G et al. (2002). Implication of protein kinase C in the regulation of DNA mismatch repair protein expression and function. J Biol Chem 277: 18061–18068.

    Article  CAS  PubMed  Google Scholar 

  • Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA et al. (2004). Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6: 884–891.

    Article  PubMed  Google Scholar 

  • Kumagai A, Dunphy WG . (2000). Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6: 839–849.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai A, Kim SM, Dunphy WG . (2004). Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J Biol Chem 279: 49599–49608.

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist A, Kallstrom H, Karlsson Rosenthal C . (2004). Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J Cell Sci 117: 4979–4990.

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Bekker-Jensen S, Bartek J, Lukas J . (2006). Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23: 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A et al. (2006). Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16: 1950–1955.

    Article  CAS  PubMed  Google Scholar 

  • McManus KJ, Hendzel MJ . (2005). ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Biol Cell 16: 5013–5025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA . (2002). Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36: 617–656.

    Article  CAS  PubMed  Google Scholar 

  • Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE et al. (2006). SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23: 319–329.

    Article  CAS  PubMed  Google Scholar 

  • Roberge M, Berlinck RG, Xu L, Anderson HJ, Lim LY, Curman D et al. (1998). High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide. Cancer Res 58: 5701–5706.

    CAS  PubMed  Google Scholar 

  • Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M et al. (2006). Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood 107: 2517–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C . (2006). CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 119: 4269–4275.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y . (2003). ATM: ready, set, go. Cell Cycle 2: 116–117.

    Article  CAS  PubMed  Google Scholar 

  • Smits VA, Medema RH . (2001). Checking out the G(2)/M transition. Biochim Biophys Acta 1519: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Syljuasen RG, Jensen S, Bartek J, Lukas J . (2006). Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66: 10253–10257.

    Article  CAS  PubMed  Google Scholar 

  • van Vugt MA, Bras A, Medema RH . (2004). Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15: 799–811.

    Article  CAS  PubMed  Google Scholar 

  • van Vugt MA, Medema RH . (2004). Checkpoint adaptation and recovery: back with Polo after the break. Cell Cycle 3: 1383–1386.

    Article  CAS  PubMed  Google Scholar 

  • Warters RL, Barrows LR, Chen DJ . (1995). DNA double-strand break repair in two radiation-sensitive mouse mammary carcinoma cell lines. Mutat Res 336: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Arai H, Iwasaki J, Shiina M, Ogata K, Hunter T et al. (2005). Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc Natl Acad Sci USA 102: 11663–11668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Kim ST, Lim DS, Kastan MB . (2002). Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22: 1049–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge R Boutros for corrections and comments on the manuscript. CD and CC are supported by a grant from the Institut National du Cancer (PL103). This work was also supported by CNRS, l'Université Paul Sabatier and la Ligue Nationale Contre le Cancer (Equipe labellisée 2005) grants to BD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Ducommun.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didier, C., Cavelier, C., Quaranta, M. et al. G2/M checkpoint stringency is a key parameter in the sensitivity of AML cells to genotoxic stress. Oncogene 27, 3811–3820 (2008). https://doi.org/10.1038/sj.onc.1211041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211041

Keywords

This article is cited by

Search

Quick links