Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells

Abstract

Human papillomaviruses (HPVs) are involved in the pathogenesis of cancer of the cervix (CaCx). MicroRNA (miRNA) expression analysis using Ambion (Austin, TX, USA) arrays showed that three miRNAs were overexpressed and 24 underexpressed in cervical cell lines containing integrated HPV-16 DNA compared to the normal cervix. Furthermore, nine miRNAs were overexpressed and one underexpressed in integrated HPV-16 cell lines compared to the HPV-negative CaCx cell line C-33A. Based on microarray and/or quantitative real-time PCR and northern blot analyses, microRNA-218 (miR-218) was specifically underexpressed in HPV-positive cell lines, cervical lesions and cancer tissues containing HPV-16 DNA compared to both C-33A and the normal cervix. Expression of the E6 oncogene of high-risk HPV-16, but not that of low-risk HPV-6, reduced miR-218 expression, and conversely, RNA interference of E6/E7 oncogenes in an HPV-16-positive cell line increased miR-218 expression. We also demonstrate that the epithelial cell-specific marker LAMB3 is a target of miR-218. We also show that LAMB3 expression is increased in the presence of the HPV-16 E6 oncogene and this effect is mediated through miR-218. These findings may contribute to a better understanding of the molecular mechanisms involved in cervical carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CaCx:

cancer of the cervix

HPVs:

human papillomaviruses

miRNA:

microRNA

References

  • Alazawi W, Pett M, Arch B, Scott L, Freeman T, Stanley MA et al. (2002). Changes in cervical keratinocyte gene expression associated with integration of human papillomavirus 16. Cancer Res 62: 6959–6965.

    CAS  PubMed  Google Scholar 

  • Band V, Dalal S, Delmolino L, Androphy EJ . (1993). Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells. EMBO J 12: 1847–1852.

    Article  CAS  Google Scholar 

  • Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N et al. (2006). Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5: 29–38.

    Article  CAS  Google Scholar 

  • Calaluce R, Bearss DJ, Barrera J, Zhao Y, Han H, Beck SK et al. (2004). Laminin-5 beta3A expression in LNCaP human prostate carcinoma cells increases cell migration and tumorigenicity. Neoplasia 6: 468–479.

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66: 7390–7394.

    Article  CAS  Google Scholar 

  • Culp TD, Budgeon LR, Marinkovich MP, Meneguzzi G, Christensen ND . (2006). Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol 80: 8940–8950.

    Article  CAS  Google Scholar 

  • Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. (2006). The colorectal microRNAome. Proc Natl Acad Sci USA 103: 3687–3692.

    Article  CAS  Google Scholar 

  • Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ et al. (2003). NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421: 639–643.

    Article  CAS  Google Scholar 

  • Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER et al. (2002). SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62: 5874–5880.

    CAS  PubMed  Google Scholar 

  • Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S et al. (2000). The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97: 10002–10007.

    Article  CAS  Google Scholar 

  • Gardiol D, Kuhne C, Glaunsinger B, Lee SS, Javier R, Banks L . (1999). Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18: 5487–5496.

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–144.

    Article  CAS  Google Scholar 

  • Hebner CM, Laimins LA . (2006). Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 16: 83–97.

    Article  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM . (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10: 4129–4135.

    Article  CAS  Google Scholar 

  • Jiang M, Milner J . (2002). Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21: 6041–6048.

    Article  CAS  Google Scholar 

  • Kim VN . (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376–385.

    Article  CAS  Google Scholar 

  • Kohlberger P, Beneder C, Horvat R, Leodolter S, Breitenecker G . (2003). Immunohistochemical expression of laminin-5 in cervical intraepithelial neoplasia. Gynecol Oncol 89: 391–394.

    Article  CAS  Google Scholar 

  • Lechner MS, Mack DH, Finicle AB, Crook T, Vousden KH, Laimins LA . (1992). Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO J 11: 3045–3052.

    Article  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Manos MM, Waldman J, Zhang TY, Greer CE, Eichinger G, Schiffman MH et al. (1994). Epidemiology and partial nucleotide sequence of four novel genital human papillomaviruses. J Infect Dis 170: 1096–1099.

    Article  CAS  Google Scholar 

  • Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA . (2007). Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer 43: 415–432.

    Article  CAS  Google Scholar 

  • Massimi P, Pim D, Storey A, Banks L . (1996). HPV-16 E7 and adenovirus E1a complex formation with TATA box binding protein is enhanced by casein kinase II phosphorylation. Oncogene 12: 2325–2330.

    CAS  PubMed  Google Scholar 

  • Meissner JD . (1999). Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines. J Gen Virol 80: 1725–1733.

    Article  CAS  Google Scholar 

  • Munger K, Howley PM . (2002). Human papillomavirus immortalization and transformation functions. Virus Res 89: 213–228.

    Article  CAS  Google Scholar 

  • Piboonniyom SO, Duensing S, Swilling NW, Hasskarl J, Hinds PW, Munger K . (2003). Abrogation of the retinoblastoma tumor suppressor checkpoint during keratinocyte immortalization is not sufficient for induction of centrosome-mediated genomic instability. Cancer Res 63: 476–483.

    CAS  PubMed  Google Scholar 

  • Skyldberg B, Salo S, Eriksson E, Aspenblad U, Moberger B, Tryggvason K et al. (1999). Laminin-5 as a marker of invasiveness in cervical lesions. J Natl Cancer Inst 91: 1882–1887.

    Article  CAS  Google Scholar 

  • Stanley MA, Browne HM, Appleby M, Minson AC . (1989). Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer 43: 672–676.

    Article  CAS  Google Scholar 

  • Tang S, Tao M, McCoy Jr JP, Zheng ZM . (2006). The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol 80: 4249–4263.

    Article  CAS  Google Scholar 

  • Thomas M, Pim D, Banks L . (1999). The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 18: 7690–7700.

    Article  CAS  Google Scholar 

  • Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J . (2006). Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 12: 2014–2024.

    Article  CAS  Google Scholar 

  • Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A et al. (2006). MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103: 9136–9141.

    Article  CAS  Google Scholar 

  • zur Hausen H . (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stefan Duensing and Karl Munger for U2OS and NOK cell lines, Margaret Stanley and Paul Lambert for W12-derived cell lines, Cathy Ma for help with standardization of miRNA microarrays, Naftali Kaminski for the use of the GenePix Scanner and Yugandhar Reddy for helpful discussions. This work was supported in part by National Institutes of Health Grant DC016406 to SAK. ASG was supported by NIH training grant 5T32GM065100 (Biotechnology Training Grant) and by NIH Ruth Kirschstein predoctoral fellowship DE019028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Khan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, I., Gardiner, A., Board, K. et al. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 27, 2575–2582 (2008). https://doi.org/10.1038/sj.onc.1210919

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210919

Keywords

This article is cited by

Search

Quick links