Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ovarian hyperstimulation induces centrosome amplification and aneuploid mammary tumors independently of alterations in p53 in a transgenic mouse model of breast cancer

Abstract

Aneuploidy and genomic instability are common features of human cancers, including breast cancer; however, mechanisms by which such abnormalities develop are not understood. The exquisite dependence of the mammary gland on hormones for growth and development as well as hormonal contributions to breast cancer risk and progression suggest that tumorigenic mechanisms in the breast should be considered in the context of hormonal stimulation. We used transgenic mice that overexpress luteinizing hormone with subsequent ovarian hyperstimulation as a model to identify mechanisms involved in hormone-induced mammary cancer. Tumor pathology in these mice is highly variable, suggesting individual tumors undergo distinct initiating or promoting events. Supporting this notion, hormone-induced tumors display considerable chromosomal instability and aneuploidy, despite the presence of functional p53. The presence of extensive centrosome amplification in tumors and hyperplastic glands prior to tumor formation suggests that alterations in the ovarian hormonal milieu dysregulate the centrosome cycle in mammary epithelial cells, leading to aneuploidy and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Backlund MG, Trasti SL, Backlund DC, Cressman VL, Godfrey V, Koller BH . (2001). Impact of ionizing radiation and genetic background on mammary tumorigenesis in p53-deficient mice. Cancer Res 61: 6577–6582.

    CAS  Google Scholar 

  • Baum M, Budzar AU, Cuzick J, Forbes J, Houghton JH, Klijn JG et al. (2002). Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359: 2131–2139.

    Article  CAS  Google Scholar 

  • Bonneterre J, Buzdar A, Nabholtz JM, Robertson JF, Thurlimann B, von Euler M et al. (2001). Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma. Cancer 92: 2247–2258.

    Article  CAS  Google Scholar 

  • Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH . (2003). A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res 63: 1727–1730.

    CAS  Google Scholar 

  • Brinton LA, Schairer C, Hoover RN, Fraumeni Jr JF . (1988). Menstrual factors and risk of breast cancer. Cancer Invest 6: 245–254.

    Article  CAS  Google Scholar 

  • Buzdar AU, Guastalla JP, Nabholtz JM, Cuzick J, ATAC Trialists' Group. (2006). Impact of chemotherapy regimens prior to endocrine therapy: results from the ATAC (Anastrozole and Tamoxifen, alone or in Combination) trial. Cancer 107: 472–480.

    Article  CAS  Google Scholar 

  • Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ et al. (2000). The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19: 968–988.

    Article  CAS  Google Scholar 

  • Cheng KC, Loeb LA . (1993). Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res 60: 121–156.

    Article  CAS  Google Scholar 

  • Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS . (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277: 443–456.

    Article  CAS  Google Scholar 

  • D'Assoro AB, Barrett SL, Folk C, Negron VC, Boeneman K, Busby R et al. (2002). Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat 75: 25–34.

    Article  CAS  Google Scholar 

  • Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D et al. (1995). Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev 9: 882–895.

    Article  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  Google Scholar 

  • Duesberg P, Li R, Fabarius A, Hehlmann R . (2005). The chromosomal basis of cancer. Cell Oncol 27: 293–318.

    CAS  Google Scholar 

  • Early Breast Cancer Trialists' Collaborative Group (1998). Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 351: 1451–1467.

    Article  Google Scholar 

  • Ewan KB, Henshall-Powell RL, Ravani SA, Pajares MJ, Arteaga C, Warters R et al. (2002). Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res 62: 5627–5631.

    CAS  Google Scholar 

  • Fei P, El Deiry WS . (2003). P53 and radiation responses. Oncogene 22: 5774–5783.

    Article  CAS  Google Scholar 

  • Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM et al. (1998). Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90: 1371–1388.

    Article  CAS  Google Scholar 

  • Fukasawa K, Wiener F, Vande Woude GF, Mai S . (1997). Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15: 1295–1302.

    Article  CAS  Google Scholar 

  • Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D, Brinkley WR . (2002). Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res 62: 4115–4122.

    CAS  Google Scholar 

  • Hammond SL, Ham RG, Stampfer MR . (1984). Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci USA 81: 5435–5439.

    Article  CAS  Google Scholar 

  • Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S . (1990). Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case–control study. Int J Cancer 46: 796–800.

    Article  CAS  Google Scholar 

  • Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Subler MA, Windle JJ . (1997). Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol Cell Biol 17: 723–731.

    Article  CAS  Google Scholar 

  • Irwin KL, Lee NC, Peterson HB, Rubin GL, Wingo PA, Mandel MG . (1988). Hysterectomy, tubal sterilization, and the risk of breast cancer. Am J Epidemiol 127: 1192–1201.

    Article  CAS  Google Scholar 

  • Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ et al. (2000). A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 19: 1052–1058.

    Article  CAS  Google Scholar 

  • Kero J, Poutanen M, Zhang FP, Rahman N, McNicol AM, Nilson JH et al. (2000). Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex. J Clin Invest 105: 633–641.

    Article  CAS  Google Scholar 

  • Kinyamu HK, Archer TK . (2003). Estrogen receptor-dependent proteasomal degradation of the glucocorticoid receptor is coupled to an increase in MDM2 protein expression. Mol Cell Biol 23: 5867–5881.

    Article  CAS  Google Scholar 

  • Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D et al. (2000). Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157: 2151–2159.

    Article  CAS  Google Scholar 

  • Kvale G, Heuch I . (1988). Menstrual factors and breast cancer risk. Cancer 62: 1625–1631.

    Article  CAS  Google Scholar 

  • Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM . (1998). A transgenic mouse model for mammary carcinogenesis. Oncogene 16: 997–1007.

    Article  CAS  Google Scholar 

  • Li B, Rosen JM, McMenamin-Balano J, Muller WJ, Perkins AS . (1997). neu/ERBB2 cooperates with p53-172H during mammary tumorigenesis in transgenic mice. Mol Cell Biol 17: 3155–3163.

    Article  CAS  Google Scholar 

  • Lingle WL, Salisbury JL . (1999). Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155: 1941–1951.

    Article  CAS  Google Scholar 

  • Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W et al. (2002). Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99: 1978–1983.

    Article  CAS  Google Scholar 

  • Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL . (1998). Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 95: 2950–2955.

    Article  CAS  Google Scholar 

  • Mann RJ, Keri RA, Nilson JH . (1999). Transgenic mice with chronically elevated luteinizing hormone are infertile due to anovulation, defects in uterine receptivity, and midgestation pregnancy failure. Endocrinology 140: 2592–2601.

    Article  CAS  Google Scholar 

  • Mayo LD, Donner DB . (2002). The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27: 462–467.

    Article  CAS  Google Scholar 

  • McDermott KM, Zhang J, Holst CR, Kozakiewicz BK, Singla V, Tlsty TD . (2006). p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 4: e51.

    Article  Google Scholar 

  • Miller CW, Chumakov A, Said J, Chen DL, Aslo A, Koeffler HP . (1993). Mutant p53 proteins have diverse intracellular abilities to oligomerize and activate transcription. Oncogene 8: 1815–1824.

    CAS  Google Scholar 

  • Milliken EL, Ameduri RK, Landis MD, Behrooz A, Abdul-Karim FW, Keri RA . (2002). Ovarian hyperstimulation by LH leads to mammary gland hyperplasia and cancer predisposition in transgenic mice. Endocrinology 143: 3671–3680.

    Article  CAS  Google Scholar 

  • Mohammad HP, Abbud RA, Parlow AF, Lewin JS, Nilson JH . (2003). Targeted overexpression of luteinizing hormone causes ovary-dependent functional adenomas restricted to cells of the Pit-1 lineage. Endocrinology 144: 4626–4636.

    Article  CAS  Google Scholar 

  • Pati D, Haddad BR, Haegele A, Thompson H, Kittrell FS, Shepard A et al. (2004). Hormone-induced chromosomal instability in p53-null mammary epithelium. Cancer Res 64: 5608–5616.

    Article  CAS  Google Scholar 

  • Pharoah PD, Day NE, Caldas C . (1999). Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 80: 1968–1973.

    Article  CAS  Google Scholar 

  • Pihan GA, Doxsey SJ . (1999). The mitotic machinery as a source of genetic instability in cancer. Semin Cancer Biol 9: 289–302.

    Article  CAS  Google Scholar 

  • Pihan GA, Wallace J, Zhou Y, Doxsey SJ . (2003). Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63: 1398–1404.

    CAS  Google Scholar 

  • Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD . (2001). Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409: 633–637.

    Article  CAS  Google Scholar 

  • Slaughter DP, Southwick HW, Smejkal W . (1953). Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6: 963–968.

    Article  CAS  Google Scholar 

  • Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y et al. (2003). p53 activation in adipocytes of obese mice. J Biol Chem 278: 25395–25400.

    Article  CAS  Google Scholar 

  • Zell JA, Ramakrishnan R, Rathinavelu A . (2002). Regulation of mdm2 mRNA expression in human breast tumor-derived GI-101A cells. Life Sci 71: 2331–2339.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Core facilities of the Case Comprehensive Cancer Center (P30 CA43703) provided valuable services for real time RT–PCR and radiation of mice. We thank Guan-bin Lou and Ellen Barnes for their technical advice regarding metaphase spread preparation, Lindsey Mayo for thoughtful discussions regarding p53, and Kshama Mehta from Agilent Technologies Center of Excellence for performing CGH analysis and assistance with data mining. This work was funded by USAMRMC grant DAMD 17-01-1-0195, NIH Grant CA090398 (to RAK), NIH Training Grants T32GM08056 (to ELM), T32GM08803 (to MDL) and T32CA059366 (to EJ), and a predoctoral traineeship, DAMD17-03-1-0302, from the USAMRMC (to MDL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Keri.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milliken, E., Lozada, K., Johnson, E. et al. Ovarian hyperstimulation induces centrosome amplification and aneuploid mammary tumors independently of alterations in p53 in a transgenic mouse model of breast cancer. Oncogene 27, 1759–1766 (2008). https://doi.org/10.1038/sj.onc.1210815

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210815

Keywords

This article is cited by

Search

Quick links