Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inappropriate activation of androgen receptor by relaxin via β-catenin pathway

Abstract

We have previously demonstrated that human H2-relaxin can mediate androgen-independent growth of LNCaP through a mechanism that involves the activation of the androgen receptor (AR) signaling pathway. The goal of the current study is to elucidate the mechanism(s) by which H2-relaxin causes activation of the AR pathway. Our data indicate that there is cross-talk between AR and components of the Wnt signaling pathway. Addition of H2-relaxin to LNCaP cells resulted in increased phosphorylation of protein kinase B (Akt) and inhibitory phosphorylation of glycogen synthase kinase-3β (GSK-3β) with subsequent cytoplasmic accumulation of β-catenin. Immunoprecipitation and immunocytochemical studies demonstrated that the stabilized β-catenin formed a complex with AR, which was then translocated into the nucleus. Chromatin immunoprecipitation analysis determined that the AR/β-catenin complex binds to the proximal region of the prostate-specific antigen promoter. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, using LY294002, prevented both H2-relaxin-mediated phosphorylation of Akt and GSK-3β and translocation of β-catenin/AR into the nucleus. Knockdown of β-catenin levels using a β-catenin-specific small interfering RNA inhibited H2-relaxin-induced AR activity. The combined data demonstrate that PI3K/Akt and components of the Wnt pathway can facilitate H2-relaxin-mediated activation of the AR pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bartsch O, Bartlick B, Ivell R . (2001). Relaxin signalling links tyrosine phosphorylation to phosphodiesterase and adenylyl cyclase activity. Mol Hum Reprod 7: 799–809.

    Article  CAS  Google Scholar 

  • Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS . (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310: 1504–1510.

    Article  CAS  Google Scholar 

  • Cronauer MV, Schulz WA, Ackermann R, Burchardt M . (2005). Effects of WNT/beta-catenin pathway activation on signaling through T-cell factor and androgen receptor in prostate cancer cell lines. Int J Oncol 26: 1033–1040.

    CAS  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.

    Article  CAS  Google Scholar 

  • Desai SJ, Ma AH, Tepper CG, Chen HW, Kung HJ . (2006). Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications. Cancer Res 66: 10449–10459.

    Article  CAS  Google Scholar 

  • Dessauer CW, Nguyen BT . (2005). Relaxin stimulates multiple signaling pathways: activation of cAMP, PI3K, and PKCzeta in THP-1 cells. Ann N Y Acad Sci 1041: 272–279.

    Article  CAS  Google Scholar 

  • di Sant'Agnese PA, Cockett AT . (1996). Neuroendocrine differentiation in prostatic malignancy. Cancer 78: 357–361.

    Article  CAS  Google Scholar 

  • Dinjens WN, van der Weiden MM, Schroeder FH, Bosman FT, Trapman J . (1994). Frequency and characterization of p53 mutations in primary and metastatic human prostate cancer. Int J Cancer 56: 630–633.

    Article  CAS  Google Scholar 

  • Eastman Q, Grosschedl R . (1999). Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11: 233–240.

    Article  CAS  Google Scholar 

  • Figueiredo KA, Palmer JB, Mui AL, Nelson CC, Cox ME . (2005). Demonstration of upregulated H2 relaxin mRNA expression during neuroendocrine differentiation of LNCaP prostate cancer cells and production of biologically active mammalian recombinant 6 histidine-tagged H2 relaxin. Ann N Y Acad Sci 1041: 320–327.

    Article  CAS  Google Scholar 

  • Halls ML, Bathgate RA, Roche PJ, Summers RJ . (2005a). Signaling pathways of the LGR7 and LGR8 receptors determined by reporter genes. Ann N Y Acad Sci 1041: 292–295.

    Article  CAS  Google Scholar 

  • Halls ML, Bathgate RA, Summers RJ . (2005b). Signal switching after stimulation of LGR7 receptors by human relaxin 2. Ann N Y Acad Sci 1041: 288–291.

    Article  CAS  Google Scholar 

  • Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD et al. (2002). Activation of orphan receptors by the hormone relaxin. Science 295: 671–674.

    Article  CAS  Google Scholar 

  • Huss WJ, Gregory CW, Smith GJ . (2004). Neuroendocrine cell differentiation in the CWR22 human prostate cancer xenograft: association with tumor cell proliferation prior to recurrence. Prostate 60: 91–97.

    Article  Google Scholar 

  • Ivell R . (2002). Endocrinology. This hormone has been relaxin' too long!. Science 295: 637–638.

    Article  CAS  Google Scholar 

  • Lee LF, Louie MC, Desai SJ, Yang J, Chen HW, Evans CP et al. (2004). Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23: 2197–2205.

    Article  CAS  Google Scholar 

  • Louie MC, Yang HQ, Ma AH, Xu W, Zou JX, Kung HJ et al. (2003). Androgen-induced recruitment of RNA polymerase II to a nuclear receptor-p160 coactivator complex. Proc Natl Acad Sci USA 100: 2226–2230.

    Article  CAS  Google Scholar 

  • Miller JR, Moon RT . (1996). Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev 10: 2527–2539.

    Article  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    CAS  Google Scholar 

  • Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS . (1998). Activation of Akt/protein kinase B by G protein-coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinasegamma. J Biol Chem 273: 19080–19085.

    Article  CAS  Google Scholar 

  • Nesslinger NJ, Shi XB, deVere White RW . (2003). Androgen-independent growth of LNCaP prostate cancer cells is mediated by gain-of-function mutant p53. Cancer Res 63: 2228–2233.

    CAS  Google Scholar 

  • Nguyen BT, Yang L, Sanborn BM, Dessauer CW . (2003). Phosphoinositide 3-kinase activity is required for biphasic stimulation of cyclic adenosine 3′,5′-monophosphate by relaxin. Mol Endocrinol 17: 1075–1084.

    Article  CAS  Google Scholar 

  • Nusse R . (1997). A versatile transcriptional effector of Wingless signaling. Cell 89: 321–323.

    Article  CAS  Google Scholar 

  • Nusse R . (2005). Wnt signaling in disease and in development. Cell Res 15: 28–32.

    Article  CAS  Google Scholar 

  • Palejwala S, Stein D, Wojtczuk A, Weiss G, Goldsmith LT . (1998). Demonstration of a relaxin receptor and relaxin-stimulated tyrosine phosphorylation in human lower uterine segment fibroblasts. Endocrinology 139: 1208–1212.

    Article  CAS  Google Scholar 

  • Pang S, Dannull J, Kaboo R, Xie Y, Tso CL, Michel K et al. (1997). Identification of a positive regulatory element responsible for tissue-specific expression of prostate-specific antigen. Cancer Res 57: 495–499.

    CAS  Google Scholar 

  • Polakis P . (2000). Wnt signaling and cancer. Genes Dev 14: 1837–1851.

    CAS  Google Scholar 

  • Reya T, Clevers H . (2005). Wnt signalling in stem cells and cancer. Nature 434: 843–850.

    Article  CAS  Google Scholar 

  • Sherwood OD . (2004). Relaxin's physiological roles and other diverse actions. Endocr Rev 25: 205–234.

    Article  CAS  Google Scholar 

  • Shi XB, Gandour-Edwards R, Beckett LA, Deitch AD, de Vere White RW . (2004). A modified yeast assay used on archival samples of localized prostate cancer tissue improves the detection of p53 abnormalities and increases their predictive value. BJU Int 94: 996–1002.

    Article  CAS  Google Scholar 

  • Silvertown JD, Geddes BJ, Summerlee AJ . (2003). Adenovirus-mediated expression of human prorelaxin promotes the invasive potential of canine mammary cancer cells. Endocrinology 144: 3683–3691.

    Article  CAS  Google Scholar 

  • Song SY, Kim S, Kim DS, Son HJ, Rhee JC, Kim YI . (2004). Abnormal expression of E-cadherin in early gastric carcinoma: its relationship with macroscopic growth patterns and catenin alpha and beta. J Clin Gastroenterol 38: 252–259.

    Article  CAS  Google Scholar 

  • Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D et al. (1995). Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269: 690–693.

    Article  CAS  Google Scholar 

  • Truica CI, Byers S, Gelmann EP . (2000). Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60: 4709–4713.

    CAS  Google Scholar 

  • Verras M, Brown J, Li X, Nusse R, Sun Z . (2004). Wnt3a growth factor induces androgen receptor-mediated transcription and enhances cell growth in human prostate cancer cells. Cancer Res 64: 8860–8866.

    Article  CAS  Google Scholar 

  • Vinall RL, Tepper CG, Shi XB, Xue LA, Gandour-Edwards R, de Vere White RW . (2006). The R273H p53 mutation can facilitate the androgen-independent growth of LNCaP by a mechanism that involves H2 relaxin and its cognate receptor LGR7. Oncogene 25: 2082–2093.

    Article  CAS  Google Scholar 

  • Vlietstra RJ, van Alewijk DC, Hermans KG, van Steenbrugge GJ, Trapman J . (1998). Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res 58: 2720–2723.

    CAS  Google Scholar 

  • Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B et al. (2002). Linking beta-catenin to androgen-signaling pathway. J Biol Chem 277: 11336–11344.

    Article  CAS  Google Scholar 

  • Yang X, Chen MW, Terry S, Vacherot F, Bemis DL, Capodice J et al. (2006). Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene 25: 3436–3444.

    Article  CAS  Google Scholar 

  • Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT . (1996). The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–1454.

    Article  CAS  Google Scholar 

  • Yuan TC, Veeramani S, Lin FF, Kondrikou D, Zelivianski S, Igawa T et al. (2006). Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Cancer 13: 151–167.

    Article  CAS  Google Scholar 

  • Zhang Q, Liu SH, Erikson M, Lewis M, Unemori E . (2002). Relaxin activates the MAP kinase pathway in human endometrial stromal cells. J Cell Biochem 85: 536–544.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr AF Parlow of the National Hormone and Peptide Program, NIDDK for providing us with the recombinant human H2-relaxin and Dr ZJ Sun (Stanford University) for pcDNA3.1-β-catenin plasmid construction. The present work is supported by NIH and DOD grants to HJK and RWD. We acknowledge the support of CCSG (Cancer Center Support Grant) to UC Davis Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R W deVere White or H-J Kung.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Vinall, R., Tepper, C. et al. Inappropriate activation of androgen receptor by relaxin via β-catenin pathway. Oncogene 27, 499–505 (2008). https://doi.org/10.1038/sj.onc.1210671

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210671

Keywords

Search

Quick links