Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Hat1: the emerging cellular roles of a type B histone acetyltransferase

Abstract

Hat1 is the sole known example of a type B histone acetyltransferase. While it has long been presumed that type B histone acetyltransferases participate in the acetylation of newly synthesized histones during the process of chromatin assembly, definitive evidence linking these enzymes to this process has been scarce. This review will discuss recent results that have begun to shed light on the roles of Hat1 and also address several outstanding questions relating to the cellular function of this enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Adams CR, Kamakaka RT . (1999). Chromatin assembly: biochemical identities and genetic redundancy. Curr Opin Genet Dev 9: 185–190.

    CAS  PubMed  Google Scholar 

  • Ahmad A, Nagamatsu N, Kouriki H, Takami Y, Nakayama T . (2001). Leucine zipper motif of chicken histone acetyltransferase-1 is essential for in vivo and in vitro interactions with the p48 subunit of chicken chromatin assembly factor-1. Nucleic Acids Res 29: 629–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Takami Y, Nakayama T . (2000). Distinct regions of the chicken p46 polypeptide are required for its in vitro interaction with histones h2b and h4 and histone acetyltransferase-1. Biochem Biophys Res Commun 279: 95–102.

    CAS  PubMed  Google Scholar 

  • Ai X, Parthun MR . (2004). The nuclear hat1p/hat2p complex: a molecular link between type B histone acetyltransferases and chromatin assembly. Mol Cell 14: 195–205.

    CAS  PubMed  Google Scholar 

  • Akey CW, Luger K . (2003). Histone chaperones and nucleosome assembly. Curr Opin Struct Biol 13: 6–14.

    CAS  PubMed  Google Scholar 

  • Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ et al. (1999). Nua4, an essential transcription adaptor/histone h4 acetyltransferase complex containing esa1p and the atm-related cofactor tra1p. EMBO J 18: 5108–5119.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annunziato AT, Hansen JC . (2000). Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr 9: 37–61.

    CAS  PubMed  Google Scholar 

  • Annunziato AT, Seale RL . (1983). Histone deacetylation is required for the maturation of newly replicated chromatin. J Biol Chem 258: 12675–12684.

    CAS  PubMed  Google Scholar 

  • Barman HK, Takami Y, Ono T, Nishijima H, Sanematsu F, Shibahara K et al. (2006). Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem Biophys Res Commun 345: 1547–1557.

    CAS  PubMed  Google Scholar 

  • Benson LJ, Gu Y, Yakovleva T, Tong K, Barrows C, Strack CL et al. (2006). Modifications of h3 and h4 during chromatin replication, nucleosome assembly, and histone exchange. J Biol Chem 281: 9287–9296.

    CAS  PubMed  Google Scholar 

  • Benson LJ, Phillips JA, Gu Y, Parthun MR, Hoffman CS, Annunziato AT . (2007). Properties of the type B histone acetyltransferase hat1: H4 tail interaction, site preference, and involvement in DNA repair. J Biol Chem 282: 836–842.

    CAS  PubMed  Google Scholar 

  • Brownell JE, Allis CD . (1996). Special hats for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6: 176–184.

    CAS  PubMed  Google Scholar 

  • Chang L, Loranger SS, Mizzen C, Ernst SG, Allis CD, Annunziato AT . (1997). Histones in transit: cytosolic histone complexes and diacetylation of h4 during nucleosome assembly in human cells. Biochemistry 36: 469–480.

    CAS  PubMed  Google Scholar 

  • Chicoine LG, Schulman IG, Richman R, Cook RG, Allis CD . (1986). Nonrandom utilization of acetylation sites in histones isolated from tetrahymena. Evidence for functionally distinct h4 acetylation sites. J Biol Chem 261: 1071–1076.

    CAS  PubMed  Google Scholar 

  • Decker RS, Yamaguchi M, Possenti R, Bradley MK, DePamphilis ML . (1987). In vitro initiation of DNA replication in simian virus 40 chromosomes. J Biol Chem 262: 10863–10872.

    CAS  PubMed  Google Scholar 

  • Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V . (1998). Structure of the histone acetyltransferase hat1: a paradigm for the gcn5-related n-acetyltransferase superfamily. Cell 94: 427–438.

    CAS  PubMed  Google Scholar 

  • Eberharter A, Lechner T, Goralik-Schramel M, Loidl P . (1996). Purification and characterization of the cytoplasmic histone acetyltransferase b of maize embryos. FEBS Lett 386: 75–81.

    CAS  PubMed  Google Scholar 

  • Enomoto S, Berman J . (1998). Chromatin assembly factor i contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 12: 219–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enomoto S, McCune-Zierath PD, Gerami-Nejad M, Sanders MA, Berman J . (1997). Rlf2, a subunit of yeast chromatin assembly factor-i, is required for telomeric chromatin function in vivo. Genes Dev 11: 358–370.

    CAS  PubMed  Google Scholar 

  • Furuyama T, Dalal Y, Henikoff S . (2006). Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci USA 103: 6172–6177.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G . (1996). Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor i. Cell 86: 887–896.

    CAS  PubMed  Google Scholar 

  • Gaillard PH, Moggs JG, Roche DM, Quivy JP, Becker PB, Wood RD et al. (1997). Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO J 16: 6281–6289.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcea RL, Alberts BM . (1980). Comparative studies of histone acetylation in nucleosomes, nuclei, and intact cells. Evidence for special factors which modify acetylase action. J Biol Chem 255: 11454–11463.

    CAS  PubMed  Google Scholar 

  • Green CM, Almouzni G . (2002). When repair meets chromatin: first in series on chromatin dynamics. EMBO Rep 3: 28–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE . (1997). Histone deacetylase activity is required for full transcriptional repression by msin3a. Cell 89: 341–347.

    CAS  PubMed  Google Scholar 

  • Imhof A, Wolffe AP . (1999). Purification and properties of the xenopus hat1 acetyltransferase: association with the 14-3-3 proteins in the oocyte nucleus [in process citation]. Biochemistry 38: 13085–13093.

    CAS  PubMed  Google Scholar 

  • Jackson V, Shires A, Tanphaichitr N, Chalkley R . (1976). Modifications to histones immediately after synthesis. J Mol Biol 104: 471–483.

    CAS  PubMed  Google Scholar 

  • Jiang YH, Bressler J, Beaudet AL . (2004). Epigenetics and human disease. Annu Rev Genomics Hum Genet 5: 479–510.

    CAS  PubMed  Google Scholar 

  • John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL . (2000). The something about silencing protein, sas3, is the catalytic subunit of nua3, a ytaf(ii)30-containing hat complex that interacts with the spt16 subunit of the yeast cp (cdc68/pob3)-fact complex. Genes Dev 14: 1196–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman PD, Cohen JL, Osley MA . (1998). Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor i. Mol Cell Biol 18: 4793–4806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B . (1997). Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-i. Genes Dev 11: 345–357.

    CAS  PubMed  Google Scholar 

  • Kelly TJ, Qin S, Gottschling DE, Parthun MR . (2000). Type b histone acetyltransferase hat1p participates in telomeric silencing. Mol Cell Biol 20: 7051–7058.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleff S, Andrulis ED, Anderson CW, Sternglanz R . (1995). Identification of a gene encoding a yeast histone h4 acetyltransferase. J Biol Chem 270: 24674–24677.

    CAS  PubMed  Google Scholar 

  • Krawitz DC, Kama T, Kaufman PD . (2002). Chromatin assembly factor i mutants defective for pcna binding require asf1/hir proteins for silencing. Mol Cell Biol 22: 614–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG et al. (1996). Transcription-linked acetylation by gcn5p of histones h3 and h4 at specific lysines. Nature 383: 269–272.

    CAS  PubMed  Google Scholar 

  • Le S, Davis C, Konopka JB, Sternglanz R . (1997). Two new s-phase-specific genes from Saccharomyces cerevisiae. Yeast 13: 1029–1042.

    CAS  PubMed  Google Scholar 

  • Li JJ, Kelly TJ . (1984). Simian virus 40 DNA replication in vitro. Proc Natl Acad Sci USA 81: 6973–6977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DA, Suarez-Farinas M, Naef F, Hacker CR, Menn B, Takebayashi H et al. (2006). In vivo transcriptional profile analysis reveals rna splicing and chromatin remodeling as prominent processes for adult neurogenesis. Mol Cell Neurosci 31: 131–148.

    CAS  PubMed  Google Scholar 

  • Lopez-Rodas G, Georgieva EI, Sendra R, Loidl P . (1991a). Histone acetylation in Zea mays. I. Activities of histone acetyltransferases and histone deacetylases. J Biol Chem 266: 18745–18750.

    CAS  PubMed  Google Scholar 

  • Lopez-Rodas G, Tordera V, Sanchez del Pino MM, Franco L . (1991b). Subcellular localization and nucleosome specificity of yeast histone acetyltransferases. Biochemistry 30: 3728–3732.

    CAS  PubMed  Google Scholar 

  • Louie AJ, Candido EP, Dixon GH . (1974). Enzymatic modifications and their possible roles in regulating the binding of basic proteins to DNA and in controlling chromosomal structure. Cold Spring Harb Symp Quant Biol 38: 803–819.

    CAS  PubMed  Google Scholar 

  • Loyola A, Almouzni G . (2004). Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 1677: 3–11.

    CAS  PubMed  Google Scholar 

  • Lusser A, Eberharter A, Loidl A, Goralik-Schramel M, Horngacher M, Haas H et al. (1999). Analysis of the histone acetyltransferase b complex of maize embryos. Nucleic Acids Res 27: 4427–4435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XJ, Wu J, Altheim BA, Schultz MC, Grunstein M . (1998). Deposition-related sites k5/k12 in histone h4 are not required for nucleosome deposition in yeast. Proc Natl Acad Sci USA 95: 6693–6698.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald N, Welburn JP, Noble ME, Nguyen A, Yaffe MB, Clynes D et al. (2005). Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell 20: 199–211.

    CAS  PubMed  Google Scholar 

  • Makowski AM, Dutnall RN, Annunziato AT . (2001). Effects of acetylation of histone h4 at lysines 8 and 16 on activity of the hat1 histone acetyltransferase. J Biol Chem 276: 43499–43502.

    CAS  PubMed  Google Scholar 

  • Martinez-Balbas MA, Tsukiyama T, Gdula D, Wu C . (1998). Drosophila nurf-55, a wd repeat protein involved in histone metabolism. Proc Natl Acad Sci USA 95: 132–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Megee PC, Morgan BA, Mittman BA, Smith MM . (1990). Genetic analysis of histone h4: essential role of lysines subject to reversible acetylation. Science 247: 841–845.

    CAS  PubMed  Google Scholar 

  • Meijsing SH, Ehrenhofer-Murray AE . (2001). The silencing complex sas-i links histone acetylation to the assembly of repressed chromatin by caf-i and asf1 in Saccharomyces cerevisiae. Genes Dev 15: 3169–3182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mingarro I, Sendra R, Salvador ML, Franco L . (1993). Site specificity of pea histone acetyltransferase b in vitro. J Biol Chem 268: 13248–13252.

    CAS  PubMed  Google Scholar 

  • Mosammaparast N, Guo Y, Shabanowitz J, Hunt DF, Pemberton LF . (2002). Pathways mediating the nuclear import of histones h3 and h4 in yeast. J Biol Chem 277: 862–868.

    CAS  PubMed  Google Scholar 

  • Park IK, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R et al. (2002). Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 99: 488–498.

    CAS  PubMed  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE . (1996). The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87: 85–94.

    CAS  PubMed  Google Scholar 

  • Pogribny IP, Tryndyak VP, Muskhelishvili L, Rusyn I, Ross SA . (2007). Methyl deficiency, alterations in global histone modifications, and carcinogenesis. J Nutr 137: 216S–222S.

    CAS  PubMed  Google Scholar 

  • Poveda A, Pamblanco M, Tafrov S, Tordera V, Sternglanz R, Sendra R . (2004). Hif1 is a component of yeast histone acetyltransferase b, a complex mainly localized in the nucleus. J Biol Chem 279: 16033–16043.

    CAS  PubMed  Google Scholar 

  • Qian YW, Lee EY . (1995). Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem 270: 25507–25513.

    CAS  PubMed  Google Scholar 

  • Qian YW, Wang YC, Hollingsworth Jr RE, Jones D, Ling N, Lee EY . (1993). A retinoblastoma-binding protein related to a negative regulator of ras in yeast. Nature 364: 648–652.

    CAS  PubMed  Google Scholar 

  • Qin S, Parthun MR . (2002). Histone h3 and the histone acetyltransferase hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22: 8353–8365.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin S, Parthun MR . (2006). Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double strand breaks. Mol Cell Biol 26: 3649–3658.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richman R, Chicoine LG, Collini MP, Cook RG, Allis CD . (1988). Micronuclei and the cytoplasm of growing tetrahymena contain a histone acetylase activity which is highly specific for free histone h4. J Cell Biol 106: 1017–1026.

    CAS  PubMed  Google Scholar 

  • Ruiz-Carillo A, Wangh LJ, Allfry V . (1975). Processing of newly synthesized histone molecules. Science 190: 117–128.

    Google Scholar 

  • Ruiz-Garcia AB, Sendra R, Galiana M, Pamblanco M, Perez-Ortin JE, Tordera V . (1998). Hat1 and hat2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone h4. J Biol Chem 273: 12599–12605.

    CAS  PubMed  Google Scholar 

  • Seiden-Long IM, Brown KR, Shih W, Wigle DA, Radulovich N, Jurisica I et al. (2006). Transcriptional targets of hepatocyte growth factor signaling and ki-ras oncogene activation in colorectal cancer. Oncogene 25: 91–102.

    CAS  PubMed  Google Scholar 

  • Sharp JA, Fouts ET, Krawitz DC, Kaufman PD . (2001). Yeast histone deposition protein asf1p requires hir proteins and pcna for heterochromatic silencing. Curr Biol 11: 463–473.

    CAS  PubMed  Google Scholar 

  • Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C et al. (1998). Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150: 613–632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J et al. (1998). Esa1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci USA 95: 3561–3565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel RE, Cook RG, Allis CD . (1994). Non-random acetylation of histone h4 by a cytoplasmic histone acetyltransferase as determined by novel methodology. J Biol Chem 269: 18576–18582.

    CAS  PubMed  Google Scholar 

  • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD . (1995). Conservation of deposition-related acetylation sites in newly synthesized histones h3 and h4. Proc Natl Acad Sci USA 92: 1237–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sures I, Gallwitz D . (1980). Histone-specific acetyltransferases from calf thymus. Isolation, properties, and substrate specificity of three different enzymes. Biochemistry 19: 943–951.

    CAS  PubMed  Google Scholar 

  • Suter B, Tong A, Chang M, Yu L, Brown GW, Boone C et al. (2004). The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae. Genetics 167: 579–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y . (2004). Histone h3.1 and h3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51–61.

    CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL . (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator rpd3p (see comments). Science 272: 408–411.

    CAS  PubMed  Google Scholar 

  • Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X et al. (2004). Global mapping of the yeast genetic interaction network. Science 303: 808–813.

    CAS  PubMed  Google Scholar 

  • Trievel RC, Rojas JR, Sterner DE, Venkataramani RN, Wang L, Zhou J et al. (1999). Crystal structure and mechanism of histone acetylation of the yeast gcn5 transcriptional coactivator. Proc Natl Acad Sci USA 96: 8931–8936.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT . (1999). The rcaf complex mediates chromatin assembly during DNA replication and repair. Nature 402: 555–560.

    CAS  PubMed  Google Scholar 

  • Vermaak D, Wade PA, Jones PL, Shi YB, Wolffe AP . (1999). Functional analysis of the sin3-histone deacetylase rpd3-rbap48-histone h4 connection in the xenopus oocyte. Mol Cell Biol 19: 5847–5860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B . (1996). Nucleosome assembly by a complex of caf-1 and acetylated histones h3/h4. Cell 87: 95–104.

    CAS  PubMed  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B . (1998). Nucleosomal DNA regulates the core-histone-binding subunit of the human hat1 acetyltransferase. Curr Biol 8: 96–108.

    CAS  PubMed  Google Scholar 

  • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M . (2002). Histone acetylation regulates the time of replication origin firing. Mol Cell 10: 1223–1233.

    CAS  PubMed  Google Scholar 

  • Wade PA, Jones PL, Vermaak D, Wolffe AP . (1998). A multiple subunit mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated snf2 superfamily atpase. Curr Biol 8: 843–846.

    CAS  PubMed  Google Scholar 

  • Wiegand RC, Brutlag DL . (1981). Histone acetylase from Drosophila melanogaster specific for h4. J Biol Chem 256: 4578–4583.

    CAS  PubMed  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W . (1998). Nurd, a novel complex with both atp-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2: 851–861.

    CAS  PubMed  Google Scholar 

  • Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R . (2000). Crystal structure of yeast esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell 6: 1195–1205.

    CAS  PubMed  Google Scholar 

  • Zhang K, Dent SY . (2005). Histone modifying enzymes and cancer: going beyond histones. J Cell Biochem 96: 1137–1148.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D . (1997). Histone deacetylases and sap18, a novel polypeptide, are components of a human sin3 complex. Cell 89: 357–364.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D . (1999). Analysis of the nurd subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the reviewers for excellent suggestions that have improved the manuscript. Work in my laboratory related to HAT1 is supported by the National Institutes of Health (R01 GM62970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Parthun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthun, M. Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26, 5319–5328 (2007). https://doi.org/10.1038/sj.onc.1210602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210602

Keywords

This article is cited by

Search

Quick links