Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HIF-2α specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites

Abstract

The mechanisms that are responsible for the restricted pattern of expression of the VE-cadherin gene in endothelial cells are not clearly understood. Regulation of expression is under the control of an approximately 140 bp proximal promoter that provides basal, non-endothelial specific expression. A larger region contained within the 2.5 kb genomic DNA sequence located ahead of the transcription start is involved in the specific expression of the gene in endothelial cells. We show here that the VE-cadherin promoter contains several putative hypoxia response elements (HRE) which are able to bind endothelial nuclear factors under normoxia. The VE-cadherin gene is not responsive to hypoxia but hypoxia-inducible factor (HIF)-2α specifically activates the promoter while HIF-1α does not. The HRE, that are involved in this activity have been identified. Further, we show that HIF-2α cooperates with the Ets-1 transcription factor for activation of the VE-cadherin promoter and that this synergy is dependent on the binding of Ets-1 to DNA. This cooperative action of HIF-2α with Ets-1 most probably participates to the transcriptional regulation of expression of the gene in endothelial cells. This mechanism may also be involved in the expression of the VE-cadherin gene by tumor cells in the process of vascular mimicry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Baek JH, Mahon PC, Oh J, Kelly B, Krishnamachary B, Pearson M et al. (2005). OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol Cell 17: 503–512.

    Article  CAS  Google Scholar 

  • Brahimi-Horn C, Mazure N, Pouyssegur J . (2005). Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications. Cell Signal 17: 1–9.

    Article  CAS  Google Scholar 

  • Breier G, Breviario F, Caveda L, Berthier R, Schnürch H, Gotsch U et al. (1996). Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87: 630–641.

    CAS  PubMed  Google Scholar 

  • Bruick RK, McKnight SL . (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340.

    Article  CAS  Google Scholar 

  • Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F et al. (1999). Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98: 147–157.

    Article  CAS  Google Scholar 

  • Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D et al. (1996). Inhibition of cultured cell growth by vascular endothelial cadherin (Cadherin-5/VE-cadherin). J Clin Invest 98: 886–893.

    Article  CAS  Google Scholar 

  • Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M et al. (1999). Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96: 9815–9820.

    Article  CAS  Google Scholar 

  • Coulet F, Nadaud S, Agrapart M, Soubrier F . (2003). Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278: 46230–46240.

    Article  CAS  Google Scholar 

  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al. (2006). HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20: 557–570.

    Article  CAS  Google Scholar 

  • Covello KL, Simon MC, Keith B . (2005). Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res 65: 2277–2286.

    Article  CAS  Google Scholar 

  • Duan LJ, Zhang-Benoit Y, Fong GH . (2005). Endothelium-intrinsic requirement for Hif-2alpha during vascular development. Circulation 111: 2227–2232.

    Article  CAS  Google Scholar 

  • Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T et al. (2003). Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 278: 7520–7530.

    Article  CAS  Google Scholar 

  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y . (1997). A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94: 4273–4278.

    Article  CAS  Google Scholar 

  • Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W . (1997). HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 63: 51–60.

    Article  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604–4613.

    Article  CAS  Google Scholar 

  • Gavard J, Gutkind JS . (2006). VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8: 1223–1234.

    Article  CAS  Google Scholar 

  • Gory S, Dalmon J, Prandini M-H, Kortulewski T, de Launoit Y, Huber P . (1998). Requirement of a GT box (Sp1 site) and two Ets binding sites for vascular endothelial cadherin gene transcription. J Biol Chem 273: 6750–6755.

    Article  CAS  Google Scholar 

  • Gory S, Vernet M, Laurent M, Dejana E, Dalmon J, Huber P . (1999). The vascular endothelial-cadherin promoter directs endothelial-specific expression in transgenic mice. Blood 93: 184–192.

    CAS  PubMed  Google Scholar 

  • Gory-Fauré S, Prandini MH, Pointu H, Roullot V, Pignot-Paintrand I, Vernet M et al. (1999). Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126: 2093–2102.

    Google Scholar 

  • Gulino D, Delachanal E, Concord E, Genoux Y, Morand B, Valiron MO et al. (1998). Alteration of endothelial cell monolayer integrity triggers resynthesis of vascular endothelium cadherin. J Biol Chem 273: 29786–29793.

    Article  CAS  Google Scholar 

  • Hegen A, Koidl S, Weindel K, Marme D, Augustin HG, Fiedler U . (2004). Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements. Arterioscler Thromb Vasc Biol 24: 1803–1809.

    Article  CAS  Google Scholar 

  • Hisatsune H, Matsumura K, Ogawa M, Uemura A, Kondo N, Yamashita JK et al. (2005). High level of endothelial cell-specific gene expression by a combination of the 5′ flanking region and the 5′ half of the first intron of the VE-cadherin gene. Blood 105: 4657–4663.

    Article  CAS  Google Scholar 

  • Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC . (2003). Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23: 9361–9374.

    Article  CAS  Google Scholar 

  • Iurlaro M, Demontis F, Corada M, Zanetta L, Drake C, Gariboldi M et al. (2004). VE-cadherin expression and clustering maintain low levels of survivin in endothelial cells. Am J Pathol 165: 181–189.

    Article  CAS  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468.

    Article  CAS  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

    Article  CAS  Google Scholar 

  • Jain S, Maltepe E, Lu MM, Simon C, Bradfield CA . (1998). Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 73: 117–123.

    Article  CAS  Google Scholar 

  • Jiang BH, Rue E, Wang GL, Roe R, Semenza GL . (1996). Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271: 17771–17778.

    Article  CAS  Google Scholar 

  • Kaelin Jr WG . (2002). How oxygen makes its presence felt. Genes Dev 16: 1441–1445.

    Article  CAS  Google Scholar 

  • Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G et al. (1992). A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118: 1511–1522.

    Article  CAS  Google Scholar 

  • Lelièvre E, Lionneton F, Mattot V, Spruyt N, Soncin F . (2002). Ets-1 Regulates fli-1 Expression in Endothelial Cells. Identification of ETS-binding sites in the fli-1 gene promoter. J Biol Chem 277: 25143–25151.

    Article  Google Scholar 

  • Lelièvre E, Lionneton F, Soncin F, Vandenbunder B . (2001). The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int J Biochem Cell Biol 33: 391–407.

    Article  Google Scholar 

  • Lelièvre E, Mattot V, Huber P, Vandenbunder B, Soncin F . (2000). Ets1 lowers capillary endothelial cell density at confluence and induces the expression of VE-cadherin. Oncogene 19: 2438–2446.

    Article  Google Scholar 

  • Lionneton F, Lelievre E, Baillat D, Stehelin D, Soncin F . (2003). Characterization and functional analysis of the p42Ets-1 variant of the mouse Ets-1 transcription factor. Oncogene 22: 9156–9164.

    Article  CAS  Google Scholar 

  • Lofstedt T, Fredlund E, Holmquist-Mengelbier L, Pietras A, Ovenberger M, Poellinger L et al. (2007). Hypoxia inducible factor-2alpha in cancer. Cell Cycle 6: 919–926.

    Article  Google Scholar 

  • May C, Doody JF, Abdullah R, Balderes P, Xu X, Chen CP et al. (2005). Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature. Blood 105: 4337–4344.

    Article  CAS  Google Scholar 

  • Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S et al. (2003). Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278: 11032–11040.

    Article  CAS  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Moller NPH, Risau W et al. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846.

    Article  CAS  Google Scholar 

  • Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E . (1995). Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 270: 30965–30972.

    Article  CAS  Google Scholar 

  • O'Rourke JF, Tian YM, Ratcliffe PJ, Pugh CW . (1999). Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem 274: 2060–2071.

    Article  CAS  Google Scholar 

  • Peng J, Zhang L, Drysdale L, Fong GH . (2000). The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97: 8386–8391.

    Article  CAS  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25: 5675–5686.

    Article  CAS  Google Scholar 

  • Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U et al. (2002). Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 13: 1721–1732.

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T . (1989). Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press: Cold Spring Harbor.

    Google Scholar 

  • Sato TN, Qin Y, Kozak CA, Audus KL . (1993). tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci USA 90: 9355–9358.

    Article  CAS  Google Scholar 

  • Schnürch H, Risau W . (1993). Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119: 957–968.

    PubMed  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  Google Scholar 

  • Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271: 32529–32537.

    Article  CAS  Google Scholar 

  • Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE . (1991). Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci USA 88: 5680–5684.

    Article  CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E . (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.

    Article  CAS  Google Scholar 

  • Soncin F, Mattot V, Lionneton F, Spruyt N, Lepretre F, Begue A et al. (2003). VE-statin, an endothelial repressor of smooth muscle cell migration. Embo J 22: 5700–5711.

    Article  CAS  Google Scholar 

  • Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL . (2003). Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res 63: 6130–6134.

    CAS  PubMed  Google Scholar 

  • Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ et al. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157: 411–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teruyama K, Abe M, Nakano T, Takahashi S, Yamada S, Sato Y . (2001). Neuropilin-1 is a downstream target of transcription factor Ets-1 in human umbilical vein endothelial cells. FEBS Lett 504: 1–4.

    Article  CAS  Google Scholar 

  • Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL . (1998). The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12: 3320–3324.

    Article  CAS  Google Scholar 

  • Tian H, McKnight SL, Russell DW . (1997). Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 72–82.

    Article  CAS  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL . (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92: 5510–5514.

    Article  CAS  Google Scholar 

  • Wang GL, Semenza GL . (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90: 4304–4308.

    Article  CAS  Google Scholar 

  • Wang GL, Semenza GL . (1995). Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270: 1230–1237.

    Article  CAS  Google Scholar 

  • Wang V, Davis DA, Haque M, Huang LE, Yarchoan R . (2005). Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293 T cells. Cancer Res 65: 3299–3306.

    Article  CAS  Google Scholar 

  • Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C et al. (2003). Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17: 271–273.

    Article  CAS  Google Scholar 

  • Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL et al. (1998). Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92: 2260–2268.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr P Huber for providing us the H5 V and 3T3 cells, Drs M Gassman and D Russell for providing us with the HIF-1 and EPAS-1 expression plasmids. This work was funded by Ligue Nationale contre le Cancer (Equipe labellisée La Ligue 2005), Association for International Cancer Research, Association pour la Recherche sur le Cancer, and Fondation de France. AL, EL, BC and FL were recipients of Ligue Nationale contre le Cancer fellowships. FS is Directeur de Recherche INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Soncin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bras, A., Lionneton, F., Mattot, V. et al. HIF-2α specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26, 7480–7489 (2007). https://doi.org/10.1038/sj.onc.1210566

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210566

Keywords

This article is cited by

Search

Quick links