Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins

Abstract

Cancer cells display an altered distribution of DNA methylation relative to normal cells. Certain tumor suppressor gene promoters are hypermethylated and transcriptionally inactivated, whereas repetitive DNA is hypomethylated and transcriptionally active. Little is understood about how the abnormal DNA methylation patterns of cancer cells are established and maintained. Here, we identify over 20 DNMT3B transcripts from many cancer cell lines and primary acute leukemia cells that contain aberrant splicing at the 5′ end of the gene, encoding truncated proteins lacking the C-terminal catalytic domain. Many of these aberrant transcripts retain intron sequences. Although the aberrant transcripts represent a minority of the DNMT3B transcripts present, Western blot analysis demonstrates truncated DNMT3B isoforms in the nuclear protein extracts of cancer cells. To test if expression of a truncated DNMT3B protein could alter the DNA methylation patterns within cells, we expressed DNMT3B7, the most frequently expressed aberrant transcript, in 293 cells. DNMT3B7-expressing 293 cells have altered gene expression as identified by microarray analysis. Some of these changes in gene expression correlate with altered DNA methylation of corresponding CpG islands. These results suggest that truncated DNMT3B proteins could play a role in the abnormal distribution of DNA methylation found in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P . (2006). Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 76: 23–32.

    Article  CAS  Google Scholar 

  • Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB et al. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3: 89–95.

    Article  CAS  Google Scholar 

  • Bartel F, Taubert H, Harris LC . (2002). Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2: 9–15.

    Article  CAS  Google Scholar 

  • Beaulieu N, Morin S, Chute IC, Robert M-F, Nguyen H, MacLeod AR . (2002). An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem 277: 28176–28181.

    Article  CAS  Google Scholar 

  • Bestor TH . (2000). The DNA methyltransferases of mammals. Hum Molec Genet 9: 2395–2402.

    Article  CAS  Google Scholar 

  • Chan AO . (2006). E-cadherin in gastric cancer. World J Gastroenterol 12: 199–203.

    Article  CAS  Google Scholar 

  • Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA . (2002). Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Molecular Cell 10: 45–53.

    Article  CAS  Google Scholar 

  • Clark SJ, Harrison J, Paul CL, Frommer M . (1994). High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22: 2990–2997.

    Article  CAS  Google Scholar 

  • Cowin P, Rowlands TM, Hatsell SJ . (2005). Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17: 499–508.

    Article  CAS  Google Scholar 

  • Culbertson MR . (1999). RNA surveillance: unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet 15: 74–80.

    Article  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R . (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300: 455.

    Article  CAS  Google Scholar 

  • Ehrlich M . (2003). The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 109: 17–28.

    Article  CAS  Google Scholar 

  • Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, Campan M et al. (2006). Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25: 2636–2645.

    Article  CAS  Google Scholar 

  • Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, Bouhassira EE et al. (2005). Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123: 1199–1212.

    Article  CAS  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492.

    Article  CAS  Google Scholar 

  • Geiman TM, Sankpal UT, Robertson AK, Chen Y, Mazumdar M, Heale JT et al. (2004a). Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. Nucleic Acids Res 32: 2716–2729.

    Article  CAS  Google Scholar 

  • Geiman TM, Sankpal UT, Robertson AK, Zhao Y, Robertson KD . (2004b). DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 318: 544–555.

    Article  CAS  Google Scholar 

  • Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M et al. (2006). Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66: 6361–6369.

    Article  CAS  Google Scholar 

  • Hansen RS . (2003). X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 12: 2559–2567.

    Article  CAS  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CMR et al. (1999). The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96: 14412–14417.

    Article  CAS  Google Scholar 

  • Jumaa H, Bossaller L, Portugal K, Storch B, Lotz M, Flemming A et al. (2003). Deficiency of the adaptor SLP-65 in pre-B-cell lymphoblastic leukaemia. Nature 423: 452–456.

    Article  CAS  Google Scholar 

  • Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S . (2003). Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett 192: 75–82.

    Article  CAS  Google Scholar 

  • Kang ES, Park CW, Chung JH . (2001). Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1. Biochem & Biophys Res Comm 289: 862–868.

    Article  CAS  Google Scholar 

  • Karpf AR, Matsui S . (2005). Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65: 8635–8639.

    Article  CAS  Google Scholar 

  • Kim G-D, Ni J, Kelesoglu N, Roberts RJ, Pradhan S . (2002). Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21: 4183–4195.

    Article  CAS  Google Scholar 

  • Kumar R, Wang R-A, Mazumdar A, Talukder AH, Mandal M, Yang Z et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature 418: 654–657.

    Article  CAS  Google Scholar 

  • Li E . (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3: 662–673.

    Article  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R . (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.

    Article  CAS  Google Scholar 

  • Lin H, Yamada Y, Nguyen S, Linhart H, Jackson-Grusby L, Meissner A et al. (2006). Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell Biol 26: 2976–2983.

    Article  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E . (1999). DNA methyltranferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.

    Article  CAS  Google Scholar 

  • Parolini O, Weinhausel A, Kagerbauer B, Sassmann J, Holter W, Gadner H et al. (2003). Differential methylation pattern of the X-linked lymphoproliferative (XLP) disease gene SH2D1A correlates with the cell lineage-specific transcription. Immunogenetics 55: 116–121.

    CAS  PubMed  Google Scholar 

  • Reuther GW, Lambert QT, Rebhun JF, Caligiuri MA, Quilliam LA, Der CJ . (2002). RasGRP4 is a novel ras activator isolated from acute myeloid leukemia. J Biol Chem 277: 30508–30514.

    Article  CAS  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416: 552–556.

    Article  CAS  Google Scholar 

  • Rhee I, Jair K-W, Yen R-WC, Lengauer C, Herman JG, Kinzler KW et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404: 1003–1007.

    Article  CAS  Google Scholar 

  • Robert M-F, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A et al. (2003). DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33: 61–65.

    Article  CAS  Google Scholar 

  • Robertson KD . (2002). DNA methylation and chromatin – unraveling the tangled web. Oncogene 21: 5361–5379.

    Article  CAS  Google Scholar 

  • Robertson KD . (2005). DNA methylation and human disease. Nat Rev Genet 6: 597–610.

    Article  CAS  Google Scholar 

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA et al. (1999). The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucl Acids Res 27: 2291–2298.

    Article  CAS  Google Scholar 

  • Rountree MR, Bachman KE, Herman JG, Baylin SB . (2001). DNA methylation, chromatin inheritance, and cancer. Oncogene 20: 3156–3165.

    Article  CAS  Google Scholar 

  • Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S . (2002). Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci USA 99: 10060–10065.

    Article  CAS  Google Scholar 

  • Shirohzu H, Kubota T, Kumazawa A, Sado T, Chijiwa T, Inagaki K et al. (2002). Three novel DNMT3B mutations in Japanese patients with ICF Syndrome. Am J Med Genet 112: 31–37.

    Article  Google Scholar 

  • Sigalotti L, Coral S, Nardi G, Spessotto A, Cortini E, Cattarossi I et al. (2002). Promoter methylation controls the expression of MAGE2, 3 and 4 genes in human cutaneous melanoma. J Immunother 25: 16–26.

    Article  CAS  Google Scholar 

  • Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E . (2006). Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development 133: 1183–1192.

    Article  CAS  Google Scholar 

  • Venables JP . (2004). Aberrant and alternative splicing in cancer. Cancer Res 64: 7647–7654.

    Article  CAS  Google Scholar 

  • Wang J, Walsh G, Liu DD, Lee JJ, Mao L . (2006a). Expression of ΔDNMT3B variants and its association with promoter methylation of p16 and RASSF1A in primary non-small cell lung cancer. Cancer Res 66: 8361–8366.

    Article  CAS  Google Scholar 

  • Wang L, Wang J, Sun S, Rodriguez M, Yue P, Jang SJ et al. (2006b). A novel DNMT3B subfamily, ΔDNMT3B, is the predominant form of DNMT3B in non-small cell lung cancer. Int J Oncol 29: 201–207.

    CAS  PubMed  Google Scholar 

  • Watermann DO, Tang Y, Zur Hausen A, Jager M, Stamm S, Stickeler E . (2006). Splicing factor Tra2-beta1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. Cancer Res 66: 4774–4780.

    Article  CAS  Google Scholar 

  • Wilkinson MF, Shyu A-B . (2002). RNA surveillance by nuclear scanning? Nat Cell Biol 4: 144–147.

    Article  Google Scholar 

  • Xu G-L, Bestor TH, Bourc’his D, Hsieh C-L, Tommerup N, Bugge M et al. (1999). Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191.

    Article  CAS  Google Scholar 

  • Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H et al. (2005). Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 102: 13580–13585.

    Article  CAS  Google Scholar 

  • Yanagisawa Y, Ito E, Yuasa Y, Maruyama K . (2002). The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochim Biophys Acta 1577: 457–465.

    Article  CAS  Google Scholar 

  • Yang Y, Li L, Wong GW, Krilis SA, Madhusudhan MS, Sali A et al. (2002). RasGRP4, a new mast cell-restricted ras guanine nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. J Biol Chem 277: 25756–25774.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hongwei Zou and Wai Hui for technical assistance; Dr Gregory L Shipley of the Quantitative Genomics Core Laboratory at The University of Texas at Houston Health Science Center for developing and running the real-time PCR assays; Dr Xinmin Li and Jean Shi for assistance with microarray analysis; Dr Shang Lin for assistance with statistical analysis; and Drs Charles Rudin, Michael Nishimura, Suzanne Conzen, and Michael Thirman for gifts of cell lines. We thank Drs Stephen B Baylin, Kevin Shannon, Anthony Fernald, Yanwen Jiang, John Joslin and Dr Zhijian Qian for their contributions to the data presented and their thoughtful comments regarding this work. This work was funded by a Howard Hughes Postdoctoral Fellowship, the University of Chicago Section of Hematology/Oncology Fund-a-Fellow Program, a Cancer Research Foundation Young Investigator Award, an American Society of Clinical Oncology Young Investigator Award, an American Cancer Society Institutional Research Grant IRG-58-004-44, a Schweppe Foundation Career Development Award and The Kimmel Scholar Award (LA Godley), and by NIH grant CA 40046 (MM Le Beau).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Godley.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostler, K., Davis, E., Payne, S. et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 26, 5553–5563 (2007). https://doi.org/10.1038/sj.onc.1210351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210351

Keywords

This article is cited by

Search

Quick links