Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epstein–Barr virus promotes genomic instability in Burkitt's lymphoma

Abstract

Epstein–Barr virus (EBV) has been implicated in the pathogenesis of human malignancies but the mechanisms of oncogenesis remain largely unknown. Genomic instability and chromosomal aberrations are hallmarks of malignant transformation. We report that EBV carriage promotes genomic instability in Burkitt's lymphoma (BL). Cytogenetic analysis of EBV− and EBV+ BL lines and their sublines derived by EBV conversion or spontaneous loss of the viral genome revealed a significant increase in dicentric chromosomes, chromosome fragments and chromatid gaps in EBV-carrying cells. Expression of EBV latency I was sufficient for this effect, whereas a stronger effect was observed in cells expressing latency III. Telomere analysis by fluorescent in situ hybridization revealed an overall increase of telomere size and prevalence of telomere fusion and double strand-break fusion in dicentric chromosomes from EBV+ cells. Phosphorylated H2AX, a reporter of DNA damage and ongoing repair, was increased in virus-carrying cells in the absence of exogenous stimuli, whereas efficient activation of DNA repair was observed in both EBV+ and EBV− cells following treatment with etoposide. These findings point to induction of telomere dysfunction and DNA damage as important mechanisms for EBV oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

BL:

Burkitt's lymphoma

EBV:

Epstein–Barr virus

LCL EBV:

immortalized lymphoblastoid cell line

CIN:

chromosomal instability

DSB:

double-strand DNA breaks

References

  • Bernheim A, Berger R, Lenoir G . (1981). Cytogenetic studies on African Burkitt's lymphoma cell lines: t(8;14), t(2;8) and t(8;22) translocations. Cancer Genet Cytogenet 3: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Liu Y, Sun H, Cheng G, Pang X, Zhou Z . (2002). Chromosomal aberrations, DNA strand breaks and gene mutations in nasopharyngeal cancer patients undergoing radiation therapy. Mutat Res 504: 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Chan SW, Blackburn EH . (2003). Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol Cell 11: 1379–1387.

    Article  CAS  PubMed  Google Scholar 

  • Chan WY, Chan AB, Liu AY, Chow JH, Ng EK, Chung SS . (2001). Chromosome 11 copy number gains and Epstein–Barr virus-associated malignancies. Diagn Mol Pathol 10: 223–227.

    Article  CAS  PubMed  Google Scholar 

  • Chan WY, Liu Y, Li CY, Ng EK, Chow JH, Li KK et al. (2002). Recurrent genomic aberrations in gastric carcinomas associated with H. pylori and Epstein–Barr virus. Diagn Mol Pathol 11: 127–134.

    Article  PubMed  Google Scholar 

  • Chen F, Liu C, Lindvall C, Xu D, Ernberg I . (2005). Epstein–Barr virus latent membrane 2A (LMP2A) down-regulates telomerase reverse transcriptase (hTERT) in epithelial cell lines. Int J Cancer 113: 284–289.

    Article  CAS  PubMed  Google Scholar 

  • Dolcetti R, Masucci MG . (2003). Epstein–Barr virus: induction and control of cell transformation. J Cell Physiol 196: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Dolcetti R, Serriano D, Masucci MG . (2005). EBV associated malignancies: epidemiology, pathogenesis and therapeutic perspective. In: Thebault S (ed). Progress in virus research Nova Science Publisher Inc: New York, pp 191–226.

    Google Scholar 

  • Gualandi G, Giselico L, Carloni M, Palitti F, Mosesso P, Alfonsi AM . (2001). Enhancement of genetic instability in human B cells by Epstein–Barr virus latent infection. Mutagenesis 16: 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt W, Sugden B . (2004). Epstein–Barr virus sustains Burkitt's lymphomas and Hodgkin's disease. Trends Mol Med 10: 331–336.

    Article  CAS  PubMed  Google Scholar 

  • Jox A, Rohen C, Belge G, Bartnitzke S, Pawlita M, Diehl V et al. (1997). Integration of Epstein–Barr virus in Burkitt's lymphoma cells leads to a region of enhanced chromosome instability. Ann Oncol 8 (Suppl 2): 131–135.

    Article  PubMed  Google Scholar 

  • Karpova MB, Schoumans J, Blennow E, Ernberg I, Henter JI, Smirnov AF et al. (2006). Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines. Int J Oncol 28: 605–617.

    CAS  PubMed  Google Scholar 

  • Klein G . (1986). Constitutive activation of oncogenes by chromosomal translocations in B-cell derived tumors. AIDS Res 2 (Suppl 1): S167–176.

    PubMed  Google Scholar 

  • Kuhn-Hallek I, Sage DR, Stein L, Groelle H, Fingeroth JD . (1995). Expression of recombination activating genes (RAG-1 and RAG-2) in Epstein–Barr virus-bearing B cells. Blood 85: 1289–1299.

    CAS  PubMed  Google Scholar 

  • Liu MT, Chang YT, Chen SC, Chuang YC, Chen YR, Lin CS et al. (2005). Epstein–Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene 24: 2635–2646.

    Article  CAS  PubMed  Google Scholar 

  • Liu MT, Chen YR, Chen SC, Hu CY, Lin CS, Chang YT et al. (2004). Epstein–Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 23: 2531–2539.

    Article  CAS  PubMed  Google Scholar 

  • Lowndes NF, Toh GW . (2005). DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 15: R99–R102.

    Article  CAS  PubMed  Google Scholar 

  • Mochida A, Gotoh E, Senpuku H, Harada S, Kitamura R, Takahashi T et al. (2005). Telomere size and telomerase activity in Epstein–Barr virus (EBV)-positive and EBV-negative Burkitt's lymphoma cell lines. Arch Virol 150: 2139–2150.

    Article  CAS  PubMed  Google Scholar 

  • O'Nions J, Allday MJ . (2003). Epstein–Barr virus can inhibit genotoxin-induced G1 arrest downstream of p53 by preventing the inactivation of CDK2. Oncogene 22: 7181–7191.

    Article  CAS  PubMed  Google Scholar 

  • Obe G, Pfeiffer P, Savage JR, Johannes C, Goedecke W, Jeppesen P et al. (2002). Chromosomal aberrations: formation, identification and distribution. Mutat Res 504: 17–36.

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J et al. (2004). Identification of virus-encoded microRNAs. Science 304: 734–736.

    Article  CAS  PubMed  Google Scholar 

  • Potter M, Marcu KB . (1997). The c-myc story: where we've been, where we seem to be going. Curr Top Microbiol Immunol 224: 1–17.

    CAS  PubMed  Google Scholar 

  • Raptis S, Bapat B . (2006). Genetic instability in human tumors. Exs 96: 303–320.

    CAS  Google Scholar 

  • Rickinson AB, Kieff E . (1996). Epstein–Barr virus. In: Fields BN, Knipe DM, Howley PM (eds). Virology. Lippincott-Raven: Philadelphia, pp 2397–2446.

    Google Scholar 

  • Rowe M, Rowe DT, Gregory CD, Young LS, Farrell PJ, Rupani H et al. (1987). Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6: 2743–2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhmacher M, Staege MS, Pajic A, Polack A, Weidle UH, Bornkamm GW et al. (1999). Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9: 1255–1258.

    Article  CAS  PubMed  Google Scholar 

  • Shao JY, Huang XM, Yu XJ, Huang LX, Wu QL, Xia JC et al. (2001). Loss of heterozygosity and its correlation with clinical outcome and Epstein–Barr virus infection in nasopharyngeal carcinoma. Anticancer Res 21: 3021–3029.

    CAS  PubMed  Google Scholar 

  • Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T . (2002). DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12: 1635–1644.

    Article  CAS  PubMed  Google Scholar 

  • Stollmann B, Fonatsch C, Havers W . (1985). Persistent Epstein–Barr virus infection associated with monosomy 7 or chromosome 3 abnormality in childhood myeloproliferative disorders. Br J Haematol 60: 183–196.

    Article  CAS  PubMed  Google Scholar 

  • Thorley-Lawson DA . (2001). Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1: 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Urushibara A, Kodama S, Suzuki K, Desa MB, Suzuki F, Tsutsui T et al. (2004). Involvement of telomere dysfunction in the induction of genomic instability by radiation in SCID mouse cells. Biochem Biophys Res Commun 313: 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  • Yates JL, Warren N, Sugden B . (1985). Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313: 812–815.

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Murray PG . (2003). Epstein–Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22: 5108–5121.

    Article  CAS  PubMed  Google Scholar 

  • Zattara-Cannoni H, Horshowski N, Figarella-Branger D, Dufour H, Grisoli F, Vagner-Capodano AM . (1996). Unusual chromosome abnormalities in primary central nervous system lymphoma. Leuk Lymphoma 21: 515–517.

    Article  CAS  PubMed  Google Scholar 

  • Zech L, Haglund U, Nilsson K, Klein G . (1976). Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer 17: 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Zimonjic DB, Keck-Waggoner C, Popescu NC . (2001). Novel genomic imbalances and chromosome translocations involving c-myc gene in Burkitt's lymphoma. Leukemia 15: 1582–1588.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Cancer Society, the Swedish Medical Research Council and the Karolinska Institute, Stockholm, Sweden. SAK is supported by a PhD fellowship awarded by the Iranian Government. AS was supported by personal fellowship awarded by the Cancer Research Institute/Cancer Foundation, New York, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Masucci.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamranvar, S., Gruhne, B., Szeles, A. et al. Epstein–Barr virus promotes genomic instability in Burkitt's lymphoma. Oncogene 26, 5115–5123 (2007). https://doi.org/10.1038/sj.onc.1210324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210324

Keywords

This article is cited by

Search

Quick links