Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Tumor microenvironment and neurofibromatosis type I: connecting the GAPs

Abstract

The human disease von Recklinghausen's neurofibromatosis (Nf1) is one of the most common genetic disorders. It is caused by mutations in the NF1 tumor suppressor gene, which encodes a GTPase activating protein (GAP) that negatively regulates p21-RAS signaling. Dermal and plexiform neurofibromas as well as malignant peripheral nerve sheath tumors and other malignant tumors, are significant complications in Nf1. Neurofibromas are complex tumors and composed mainly of abnormal local cells including Schwann cells, endothelial cells, fibroblasts and additionally a large number of infiltrating inflammatory mast cells. Recent work has indicated a role for the microenvironment in plexiform neurofibroma genesis. The emerging evidence points to mast cells as crucial contributors to neurofibroma tumorigenesis. Therefore, further understanding of the molecular interactions between Schwann cells and their environment will provide tools to develop new therapies aimed at delaying or preventing tumor formation in Nf1 patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arun D, Gutmann DH . (2004). Recent advances in neurofibromatosis type 1. Curr Opin Neurol 17: 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR et al. (2003). Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res 63: 8573–8577.

    CAS  PubMed  Google Scholar 

  • Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH . (2002). Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 22: 5100–5113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M et al. (1990). The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63: 851–859.

    Article  CAS  PubMed  Google Scholar 

  • Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW et al. (1994). Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8: 1019–1029.

    Article  CAS  PubMed  Google Scholar 

  • Castle B, Baser ME, Huson SM, Cooper DN, Upadhyaya M . (2003). Evaluation of genotype-phenotype correlations in neurofibromatosis type 1. J Med Genet 40: e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cichowski K, Jacks T . (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell 104: 593–604.

    Article  CAS  PubMed  Google Scholar 

  • Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME et al. (1999). Mouse models of tumor development in neurofibromatosis type 1. Science 286: 2172–2176.

    Article  CAS  PubMed  Google Scholar 

  • Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M et al. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415: 526–530.

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta B, Dugan LL, Gutmann DH . (2003). The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. J Neurosci 23: 8949–8954.

    Article  CAS  PubMed  Google Scholar 

  • Daston MM, Scrable H, Nordlund M, Sturbaum AK, Nissen LM, Ratner N . (1992). The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron 8: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Easton DF, Ponder MA, Huson SM, Ponder BA . (1993). An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet 53: 305–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferner RE . (2006). Neurofibromatosis 1. Eur J Hum Genet [Epub ahead of print].

  • Gregory PE, Gutmann DH, Mitchell A, Park S, Boguski M, Jacks T et al. (1993). Neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules. Somat Cell Mol Genet 19: 265–274.

    Article  CAS  PubMed  Google Scholar 

  • Guo HF, The I, Hannan F, Bernards A, Zhong Y . (1997). Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 276: 795–798.

    Article  CAS  PubMed  Google Scholar 

  • Gutmann DH, Wood DL, Collins FS . (1991). Identification of the neurofibromatosis type 1 gene product. Proc Natl Acad Sci USA 88: 9658–9662.

    Article  CAS  PubMed  Google Scholar 

  • Ismat FA, Xu J, Lu MM, Epstein JA . (2006). The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1 mice. J Clin Invest 116: 2378–2384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA . (1994). Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7: 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Jentarra G, Snyder SL, Narayanan V . (2006). Genetic aspects of neurocutaneous disorders. Semin Pediatr Neurol 13: 43–47.

    Article  PubMed  Google Scholar 

  • Lakkis MM, Tennekoon GI . (2000). Neurofibromatosis type 1. I. General overview. J Neurosci Res 62: 755–763.

    Article  CAS  PubMed  Google Scholar 

  • Levy P, Vidaud D, Leroy K, Laurendeau I, Wechsler J, Bolasco G et al. (2004). Molecular profiling of malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1, based on large-scale real-time RT-PCR. Mol Cancer 3: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW et al. (2005). The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15: 1961–1967.

    Article  CAS  PubMed  Google Scholar 

  • Mousley CJ, Tyeryar KR, Ryan MM, Bankaitis VA . (2006). Sec14p-like proteins regulate phosphoinositide homoeostasis and intracellular protein and lipid trafficking in yeast. Biochem Soc Trans 34: 346–350.

    Article  CAS  PubMed  Google Scholar 

  • Page PZ, Page GP, Ecosse E, Korf BR, Leplege A, Wolkenstein P . (2006). Impact of neurofibromatosis 1 on quality of life: a cross-sectional study of 176 American cases. Am J Med Genet A 140: 1893–1898.

    Article  PubMed  Google Scholar 

  • Parada LF . (2000). Neurofibromatosis type 1. Biochim Biophys Acta 1471: M13–9.

    CAS  PubMed  Google Scholar 

  • Parada LF, Kwon CH, Zhu Y . (2005). Modeling neurofibromatosis type 1 tumors in the mouse for therapeutic intervention. Cold Spring Harb Symp Quant Biol 70: 173–176.

    Article  CAS  PubMed  Google Scholar 

  • Reilly KM, Tuskan RG, Christy E, Loisel DA, Ledger J, Bronson RT et al. (2004). Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci USA 101: 13008–13013.

    Article  CAS  PubMed  Google Scholar 

  • Riccardi VM . (1992). Neurofibromatosis phenotype, natural history and pathogenesis. The Johns Hopkins University Press: Baltimore.

    Book  Google Scholar 

  • Szudek J, Birch P, Riccardi VM, Evans DG, Friedman JM . (2000). Associations of clinical features in neurofibromatosis 1 (NF1). Genet Epidemiol 19: 429–439.

    Article  CAS  PubMed  Google Scholar 

  • The I, Hannigan GE, Cowley GS, Reginald S, Zhong Y, Gusella JF et al. (1997). Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276: 791–794.

    Article  CAS  PubMed  Google Scholar 

  • Theoharides TC, Conti P . (2004). Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25: 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y . (2002). Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 5: 95–96.

    Article  CAS  PubMed  Google Scholar 

  • Trovo-Marqui AB, Tajara EH . (2006). Neurofibromin: a general outlook. Clin Genet 70: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF . (1999). Mouse tumor model for neurofibromatosis type 1. Science 286: 2176–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward BA, Gutmann DH . (2005). Neurofibromatosis 1: from lab bench to clinic. Pediatr Neurol 32: 221–228.

    Article  PubMed  Google Scholar 

  • Weiss B, Bollag G, Shannon K . (1999). Hyperactive Ras as a therapeutic target in neurofibromatosis type 1. Am J Med Genet 89: 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Xu GF, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M et al. (1990). The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62: 599–608.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Gutmann DH . (1997). Mutations in the GAP-related domain impair the ability of neurofibromin to associate with microtubules. Brain Res 759: 149–152.

    Article  CAS  PubMed  Google Scholar 

  • Yang FC, Chen S, Clegg T, Li X, Morgan T, Estwick SA et al. (2006). Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet 15: 2421–2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang FC, Ingram DA, Chen S, Hingtgen CM, Ratner N, Monk KR et al. (2003). Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/− mast cells. J Clin Invest 112: 1851–1861.

    Article  CAS  PubMed  Google Scholar 

  • Yohay KH . (2006). The genetic and molecular pathogenesis of NF1 and NF2. Semin Pediatr Neurol 13: 21–26.

    Article  PubMed  Google Scholar 

  • Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF . (2002). Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296: 920–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Harada T, Liu L, Lush ME, Guignard F, Harada C et al. (2005). Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132: 5577–5588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Parada LF . (2002). The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2: 616–626.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ et al. (2001). Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 15: 859–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LFP is funded by NINDS and DOD (Grant # DAMD 17-02-1-0638 & DAMD 17-03-1-0216) and ACS RP-04-084-01. We thank members of the Parada lab for helpful discussions and Stephanie Bates for assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L Q Le or L F Parada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, L., Parada, L. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 26, 4609–4616 (2007). https://doi.org/10.1038/sj.onc.1210261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210261

Keywords

This article is cited by

Search

Quick links