Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumorigenesis in neurofibromatosis type 1: role of the microenvironment

Abstract

Neurofibromatosis Type 1 (NF1) is one of the most common inherited neurological disorders and predisposes patients to develop benign and malignant tumors. Neurofibromas are NF1-associated benign tumors but can cause substantial discomfort and disfigurement. Numerous studies have shown that neurofibromas arise from the Schwann cell lineage but both preclinical mouse models and clinical trials have demonstrated that the neurofibroma tumor microenvironment contributes significantly to tumorigenesis. This offers the opportunity for targeting new therapeutic vulnerabilities to treat neurofibromas. However, a translational gap exists between deciphering the contribution of the neurofibroma tumor microenvironment and clinically applying this knowledge to treat neurofibromas. Here, we discuss the key cellular and molecular components in the neurofibroma tumor microenvironment that can potentially be targeted therapeutically to advance neurofibroma treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical manifestations of neurofibroma.
Fig. 2: Components of neurofibroma tumor microenvironment.
Fig. 3: Signaling pathways regulating the functions of NFAFs.
Fig. 4: Proposed interactions between Schwann cells and fibroblasts in neurofibroma.

Similar content being viewed by others

References

  1. Le LQ, Parada LF. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene. 2007;26:4609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergoug, M, M Doudeau, F Godin, C Mosrin, B Vallee, and H Benedetti, Neurofibromin structure, functions and regulation. Cells. 2020;9:2365.

  3. Hirbe AC, Gutmann DH. Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol. 2014;13:834–43.

    Article  PubMed  Google Scholar 

  4. Brosseau JP, Pichard DC, Legius EH, Wolkenstein P, Lavker RM, Blakeley JO, et al. The biology of cutaneous neurofibromas: consensus recommendations for setting research priorities. Neurology. 2018;91:S14–S20.

    Article  PubMed  Google Scholar 

  5. Dombi E, Solomon J, Gillespie AJ, Fox E, Balis FM, Patronas N, et al. NF1 plexiform neurofibroma growth rate by volumetric MRI: relationship to age and body weight. Neurology. 2007;68:643–7.

    Article  CAS  PubMed  Google Scholar 

  6. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39:311–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296:920–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jessen KR, Mirsky R, Lloyd AC. Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol. 2015;7:a020487.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zheng H, Chang L, Patel N, Yang J, Lowe L, Burns DK, et al. Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell. 2008;13:117–28.

    Article  CAS  PubMed  Google Scholar 

  10. Joseph NM, Mosher JT, Buchstaller J, Snider P, McKeever PE, Lim M, et al. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell. 2008;13:129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le LQ, Liu C, Shipman T, Chen Z, Suter U, Parada LF. Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res. 2011;71:4686–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Z, Liu C, Patel AJ, Liao CP, Wang Y, Le LQ. Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell. 2014;26:695–706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Saito H, Yoshida T, Yamazaki H, Suzuki N. Conditional N-rasG12V expression promotes manifestations of neurofibromatosis in a mouse model. Oncogene. 2007;26:4714–9.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Mo J, Brosseau JP, Shipman T, Wang Y, Liao CP, et al. Spatiotemporal loss of NF1 in Schwann cell lineage leads to different types of cutaneous neurofibroma susceptible to modification by the hippo pathway. Cancer Disco. 2019;9:114–29.

    Article  CAS  Google Scholar 

  15. Mo, J, C Anastasaki, Z Chen, T Shipman, J Papke, K Yin, et al., Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest. 2021;131:e139807.

  16. Radomska KJ, Coulpier F, Gresset A, Schmitt A, Debbiche A, Lemoine S, et al. Cellular origin, tumor progression, and pathogenic mechanisms of cutaneous neurofibromas revealed by mice with Nf1 knockout in boundary cap cells. Cancer Disco. 2019;9:130–47.

    Article  CAS  Google Scholar 

  17. Liao CP, Booker RC, Brosseau JP, Chen Z, Mo J, Tchegnon E, et al. Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J Clin Invest. 2018;128:2848–61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brosseau JP, Liao CP, Wang Y, Ramani V, Vandergriff T, Lee M, et al. NF1 heterozygosity fosters de novo tumorigenesis but impairs malignant transformation. Nat Commun. 2018;9:5014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell. 2008;13:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fletcher JS, Pundavela J, Ratner N. After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neurooncol Adv. 2020;2:i23–i32.

    PubMed  Google Scholar 

  21. Ribeiro S, Napoli I, White IJ, Parrinello S, Flanagan AM, Suter U, et al. Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve. Cell Rep. 2013;5:126–36.

    Article  CAS  PubMed  Google Scholar 

  22. Rice FL, Houk G, Wymer JP, Gosline SJC, Guinney J, Wu J, et al. The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLoS ONE. 2019;14:e0216527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parrinello S, Noon LA, Harrisingh MC, Wingfield Digby P, Rosenberg LH, Cremona CA, et al. NF1 loss disrupts Schwann cell-axonal interactions: a novel role for semaphorin 4F. Genes Dev. 2008;22:3335–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liao CP, Pradhan S, Chen Z, Patel AJ, Booker RC, Le LQ. The role of nerve microenvironment for neurofibroma development. Oncotarget. 2016;7:61500–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fricker FR, Bennett DL. The role of neuregulin-1 in the response to nerve injury. Future Neurol. 2011;6:809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N, et al. Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J Neurosci. 2011;31:3225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ronellenfitsch MW, Harter PN, Kirchner M, Heining C, Hutter B, Gieldon L, et al. Targetable ERBB2 mutations identified in neurofibroma/schwannoma hybrid nerve sheath tumors. J Clin Invest. 2020;130:2488–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harboe M, Torvund-Jensen J, Kjaer-Sorensen K, Laursen LS. Ephrin-A1-EphA4 signaling negatively regulates myelination in the central nervous system. Glia. 2018;66:934–50.

    Article  PubMed  Google Scholar 

  29. Linneberg, C, M Harboe, and LS Laursen, Axo-Glia Interaction preceding cns myelination is regulated by bidirectional Eph-Ephrin signaling. ASN Neuro. 2015;7:1759091415602859.

  30. Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci. 2009;12:839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang FC, Ingram DA, Chen S, Hingtgen CM, Ratner N, Monk KR, et al. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/- mast cells. J Clin Invest. 2003;112:1851–61.

    Article  CAS  PubMed  Google Scholar 

  32. Yang FC, Chen S, Clegg T, Li X, Morgan T, Estwick SA, et al. Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet. 2006;15:2421–37.

    Article  CAS  PubMed  Google Scholar 

  33. Riccardi VM. Mast-cell stabilization to decrease neurofibroma growth. Preliminary experience ketotifen. Arch Dermatol. 1987;123:1011–6.

    Article  CAS  PubMed  Google Scholar 

  34. Riccardi VM. Ketotifen suppression of NF1 neurofibroma growth over 30 years. Am J Med Genet A. 2015;167:1570–7.

    Article  CAS  PubMed  Google Scholar 

  35. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, et al. Nf1-dependent tumors require a microenvironment containing Nf1+/- and c-kit-dependent bone marrow. Cell. 2008;135:437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robertson KA, Nalepa G, Yang FC, Bowers DC, Ho CY, Hutchins GD, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13:1218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prada CE, Jousma E, Rizvi TA, Wu J, Dunn RS, Mayes DA, et al. Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol. 2013;125:159–68.

    Article  CAS  PubMed  Google Scholar 

  38. Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, et al. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep. 2017;7:43315.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Peltonen J, Penttinen R, Larjava H, Aho HJ. Collagens in neurofibromas and neurofibroma cell cultures. Ann NY Acad Sci. 1986;486:260–70.

    Article  CAS  PubMed  Google Scholar 

  40. Atit RP, Crowe MJ, Greenhalgh DG, Wenstrup RJ, Ratner N. The Nf1 tumor suppressor regulates mouse skin wound healing, fibroblast proliferation, and collagen deposited by fibroblasts. J Invest Dermatol. 1999;112:835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Widemann BC, Babovic-Vuksanovic D, Dombi E, Wolters PL, Goldman S, Martin S, et al. Phase II trial of pirfenidone in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Pediatr Blood Cancer. 2014;61:1598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Babovic-Vuksanovic D, Ballman K, Michels V, McGrann P, Lindor N, King B, et al. Phase II trial of pirfenidone in adults with neurofibromatosis type 1. Neurology. 2006;67:1860–2.

    Article  CAS  PubMed  Google Scholar 

  43. Dundr P, Povysil C, Tvrdik D. Actin expression in neural crest cell-derived tumors including schwannomas, malignant peripheral nerve sheath tumors, neurofibromas and melanocytic tumors. Pathol Int. 2009;59:86–90.

    Article  PubMed  Google Scholar 

  44. Brosseau JP, Sathe AA, Wang Y, Nguyen T, Glass DA 2nd, Xing C, et al. Human cutaneous neurofibroma matrisome revealed by single-cell RNA sequencing. Acta Neuropathol Commun. 2021;9:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kadono T, Soma Y, Takehara K, Nakagawa H, Ishibashi Y, Kikuchi K. The growth regulation of neurofibroma cells in neurofibromatosis type-1: increased responses to PDGF-BB and TGF-beta 1. Biochem Biophys Res Commun. 1994;198:827–34.

    Article  CAS  PubMed  Google Scholar 

  47. Mashour GA, Ratner N, Khan GA, Wang HL, Martuza RL, Kurtz A. The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells. Oncogene. 2001;20:97–105.

    Article  CAS  PubMed  Google Scholar 

  48. Misa, K, Y Tanino, X Wang, T Nikaido, M Kikuchi, Y Sato, et al., Involvement of midkine in the development of pulmonary fibrosis. Physiol Rep. 2017;5:e13383.

  49. Dolivo DM, Larson SA, Dominko T. Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev. 2017;38:49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15:255–73.

    Article  CAS  PubMed  Google Scholar 

  51. Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Front Med (Lausanne). 2015;2:59.

    Google Scholar 

  52. Wehner D, Tsarouchas TM, Michael A, Haase C, Weidinger G, Reimer MM, et al. Wnt signaling controls pro-regenerative collagen XII in functional spinal cord regeneration in zebrafish. Nat Commun. 2017;8:126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Moleirinho S, Patrick C, Tilston-Lunel AM, Higginson JR, Angus L, Antkowiak M, et al. Willin, an upstream component of the hippo signaling pathway, orchestrates mammalian peripheral nerve fibroblasts. PLoS ONE. 2013;8:e60028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell. 2010;143:145–55.

    Article  CAS  PubMed  Google Scholar 

  55. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Streuli CH, Schmidhauser C, Bailey N, Yurchenco P, Skubitz AP, Roskelley C, et al. Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol. 1995;129:591–603.

    Article  CAS  PubMed  Google Scholar 

  57. Mascharak, S, HE desJardins-Park, MF Davitt, M Griffin, MR Borrelli, AL Moore, et al., Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science. 2021;372:eaba2374.

  58. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122:4243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun K, Park J, Gupta OT, Holland WL, Auerbach P, Zhang N, et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun. 2014;5:3485.

    Article  PubMed  CAS  Google Scholar 

  60. Wishart, AL, SJ Conner, JR Guarin, JP Fatherree, Y Peng, RA McGinn, et al., Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci Adv. 2020;6:eabc3175.

  61. Harigai R, Sakai S, Nobusue H, Hirose C, Sampetrean O, Minami N, et al. Tranilast inhibits the expression of genes related to epithelial-mesenchymal transition and angiogenesis in neurofibromin-deficient cells. Sci Rep. 2018;8:6069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hagel C, Behrens T, Prehm P, Schnabel C, Glatzel M, Friedrich RE. Hyaluronan in intra-operative edema of NF1-associated neurofibromas. Neuropathology. 2012;32:406–14.

    Article  PubMed  Google Scholar 

  63. Toole BP. Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res. 2009;15:7462–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim Y, Lee YS, Choe J, Lee H, Kim YM, Jeoung D. CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Rac1, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. J Biol Chem. 2008;283:22513–28.

    Article  CAS  PubMed  Google Scholar 

  65. Gorlewicz A, Wlodarczyk J, Wilczek E, Gawlak M, Cabaj A, Majczynski H, et al. CD44 is expressed in non-myelinating Schwann cells of the adult rat, and may play a role in neurodegeneration-induced glial plasticity at the neuromuscular junction. Neurobiol Dis. 2009;34:245–58.

    Article  CAS  PubMed  Google Scholar 

  66. Jaakkola S, Peltonen J, Riccardi V, Chu ML, Uitto J. Type 1 neurofibromatosis: selective expression of extracellular matrix genes by Schwann cells, perineurial cells, and fibroblasts in mixed cultures. J Clin Invest. 1989;84:253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell. 2002;13:3546–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, et al. Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem. 2005;280:18871–80.

    Article  CAS  PubMed  Google Scholar 

  69. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382:1430–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang-Gillam A. Targeting stroma: a tale of caution. J Clin Oncol. 2019;37:1041–3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

LQL is the Thomas L. Shield, M.D. Endowed Professor in Dermatology. He held a Career Award for Medical Scientists from the Burroughs Wellcome Fund, and is supported by funding from the National Cancer Institute of the NIH (R01 CA166593) and the Developmental and Hyperactive RAS Tumor SPORE (U54 CA196519); the US Department of Defense (W81XWH-21-1-0651); the Neurofibromatosis Therapeutic Acceleration Program; the NF1 Research Consortium Fund; and the Giorgio Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Writing – Original Draft: CJ, RMM, and LQL; Writing – Review and Editing: CJ, RMM, and LQL.

Corresponding author

Correspondence to Lu Q. Le.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to publish

There are no enrolled patients in this review and all authors provided consent for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., McKay, R.M. & Le, L.Q. Tumorigenesis in neurofibromatosis type 1: role of the microenvironment. Oncogene 40, 5781–5787 (2021). https://doi.org/10.1038/s41388-021-01979-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01979-z

This article is cited by

Search

Quick links