Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PRIMA-1MET induces nucleolar accumulation of mutant p53 and PML nuclear body-associated proteins

Abstract

We have previously identified PRIMA-1, a low molecular weight compound that restores the transcriptional transactivation function to mutant p53 and induction of apoptosis. To explore the molecular mechanism for PRIMA-1-induced mutant p53-dependent apoptosis, we examined the intracellular distribution of mutant p53 upon treatment with PRIMA-1MET by immunofluorescence staining. We found that PRIMA-1MET induced nucleolar translocation of mutant p53 and the promyelocytic leukemia (PML) nuclear body-associated proteins PML, CBP and Hsp70. Levels of Hsp70 were significantly enhanced by PRIMA-1MET treatment. PRIMA-Dead, a compound structurally related to PRIMA-1 but unable to induce mutant p53-dependent apoptosis, failed to induce nucleolar translocation of mutant p53. Our results suggest that redistribution of mutant p53 to nucleoli plays a role in PRIMA-1-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amin HM, Saeed S, Alkan S . (2001). Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 115: 287–297.

    Article  CAS  Google Scholar 

  • Arabi A, Rustum C, Hallberg E, Wright AP . (2003). Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J Cell Sci 116: 1707–1717.

    Article  CAS  Google Scholar 

  • Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K et al. (2005). c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7: 303–310.

    Article  CAS  Google Scholar 

  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP . (2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6: 665–672.

    Article  CAS  Google Scholar 

  • Bischof O, Kim SH, Irving J, Beresten S, Ellis NA, Campisi J . (2001). Regulation and localization of the Bloom syndrome protein in response to DNA damage. J Cell Biol 153: 367–380.

    Article  CAS  Google Scholar 

  • Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A . (2002). Deconstructing PML-induced premature senescence. EMBO J 21: 3358–3369.

    Article  CAS  Google Scholar 

  • Bykov JV, Issaeva N, Selivanova G, Wiman KG . (2002a). Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis 23: 2011–2018.

    Article  CAS  Google Scholar 

  • Bykov JV, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al. (2002b). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

    Article  CAS  Google Scholar 

  • Bykov VJ, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J et al. (2005a). Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem 280: 30384–30391.

    Article  CAS  Google Scholar 

  • Bykov VJ, Zache N, Stridh H, Westman J, Bergman J, Selivanova G et al. (2005b). PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24: 3484–3491.

    Article  CAS  Google Scholar 

  • Cairns CA, White RJ . (1998). p53 is a general repressor of RNA polymerase III transcription. EMBO J 17: 3112–3123.

    Article  CAS  Google Scholar 

  • Carbone R, Pearson M, Minucci S, Pelicci PG . (2002). PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21: 1633–1640.

    Article  CAS  Google Scholar 

  • Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL . (2001). PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J 20: 4547–4559.

    Article  CAS  Google Scholar 

  • D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S et al. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4: 11–19.

    Article  CAS  Google Scholar 

  • Drouin A, Schmitt A, Masse JM, Cieutat AM, Fichelson S, Cramer EM . (2001). Identification of PML oncogenic domains (PODs) in human megakaryocytes. Exp Cell Res 271: 277–285.

    Article  CAS  Google Scholar 

  • Everett RD . (2001). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20: 7266–7273.

    Article  CAS  Google Scholar 

  • Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J . (1997). A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16: 1519–1530.

    Article  CAS  Google Scholar 

  • Fagioli M, Alcalay M, Tomassoni L, Ferrucci PF, Mencarelli A, Riganelli D et al. (1998). Cooperation between the RING+B1–B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 16: 2905–2913.

    Article  CAS  Google Scholar 

  • Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW . (2000). PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14: 2015–2027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al. (2000). Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19: 6185–6195.

    Article  CAS  Google Scholar 

  • Foster BA, Coffey HA, Morin MJ, Rastinejad F . (1999). Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507–2510.

    Article  CAS  Google Scholar 

  • Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W et al. (2000). The function of PML in p53-dependent apoptosis. Nat Cell Biol 2: 730–736.

    Article  CAS  Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W et al. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4: 1–10.

    Article  CAS  Google Scholar 

  • Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A et al. (2001). Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 193: 1361–1371.

    Article  CAS  Google Scholar 

  • Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S et al. (2002). Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21: 2383–2396.

    Article  CAS  Google Scholar 

  • Le XF, Yang P, Chang KS . (1996). Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem 271: 130–135.

    Article  CAS  Google Scholar 

  • Li H, Leo C, Zhu J, Wu X, O'Neil J, Park EJ et al. (2000). Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 20: 1784–1796.

    Article  CAS  Google Scholar 

  • Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J et al. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416: 648–653.

    Article  CAS  Google Scholar 

  • Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP, Haupt Y . (2003). The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278: 33134–33141.

    Article  CAS  Google Scholar 

  • Mattsson K, Pokrovskaja K, Kiss C, Klein G, Szekely L . (2001). Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc Natl Acad Sci USA 98: 1012–1017.

    Article  CAS  Google Scholar 

  • Melnick A, Licht JD . (1999). Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  Google Scholar 

  • Olson MO, Dundr M . (2005). The moving parts of the nucleolus. Histochem Cell Biol 123: 203–216.

    Article  CAS  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S et al. (2000). PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406: 207–210.

    Article  CAS  Google Scholar 

  • Pespeni M, Hodnett M, Pittet JF . (2005). In vivo stress preconditioning. Methods 35: 158–164.

    Article  CAS  Google Scholar 

  • Pokrovskaja K, Mattsson K, Kashuba E, Klein G, Szekely L . (2001). Proteasome inhibitor induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5. J Gen Virol 82: 345–358.

    Article  CAS  Google Scholar 

  • Regad T, Chelbi-Alix MK . (2001). Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20: 7274–7286.

    Article  CAS  Google Scholar 

  • Rehman A, Chahal MS, Tang X, Bruce JE, Pommier Y, Daoud SS . (2005). Proteomic identification of heat shock protein 90 as a candidate target for p53 mutation reactivation by PRIMA-1 in breast cancer cells. Breast Cancer Res 7: R765–R774.

    Article  CAS  Google Scholar 

  • Rubbi CP, Milner J . (2003). Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22: 6068–6077.

    Article  CAS  Google Scholar 

  • Ruggero D, Pandolfi PP . (2003). Does the ribosome translate cancer? Nat Rev Cancer 3: 179–192.

    Article  CAS  Google Scholar 

  • Salomoni P, Pandolfi PP . (2002). The role of PML in tumor suppression. Cell 108: 165–170.

    Article  CAS  Google Scholar 

  • Tao W, Levine AJ . (1999). P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96: 6937–6941.

    Article  CAS  Google Scholar 

  • Visintin R, Hwang ES, Amon A . (1999). Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398: 818–823.

    Article  CAS  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  Google Scholar 

  • Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R et al. (1998). PML is essential for multiple apoptotic pathways. Nat Genet 20: 266–272.

    Article  CAS  Google Scholar 

  • Yang S, Kuo C, Bisi JE, Kim MK . (2002). PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4: 865–870.

    Article  CAS  Google Scholar 

  • Zhai W, Comai L . (2000). Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20: 5930–5938.

    Article  CAS  Google Scholar 

  • Zhong S, Salomoni P, Pandolfi PP . (2000). The transcriptional role of PML and the nuclear body. Nat Cell Biol 2: E85–E90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Cancerfonden, the Karolinska Institute, the Ingabritt & Arne Lundberg Foundation, and the 6th EU framework program. The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. The community is not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K G Wiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rökaeus, N., Klein, G., Wiman, K. et al. PRIMA-1MET induces nucleolar accumulation of mutant p53 and PML nuclear body-associated proteins. Oncogene 26, 982–992 (2007). https://doi.org/10.1038/sj.onc.1209858

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209858

Keywords

This article is cited by

Search

Quick links