Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Compensation and specificity of function within the E2F family

Abstract

Functions encoded by single genes in lower organisms are often represented by multiple related genes in the mammalian genome. An example is the retinoblastoma and E2F families of proteins that regulate transcription during the cell cycle. Analysis of gene function using germline mutations is often confounded by overlapping function resulting in compensation. Indeed, in cells deleted of the E2F1 or E2F3 genes, there is an increase in the expression of the other family member. To avoid complications of compensatory effects, we have used small-interfering RNAs that target individual E2F proteins to generate a temporary loss of E2F function. We find that both E2F1 and E2F3 are required for cells to enter the S phase from a quiescent state, whereas only E2F3 is necessary for the S phase in growing cells. We also find that the acute loss of E2F3 activity affects the expression of genes encoding DNA replication and mitotic activities, whereas loss of E2F1 affects a limited number of genes that are distinct from those regulated by E2F3. We conclude that the long-term loss of E2F activity does lead to compensation by other family members and that the analysis of acute loss of function reveals specific and distinct roles for these proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Attwooll C, Denchi EL, Helin K . (2004). The E2F family: specific functions and overlapping interests. The EMBO J 23: 4709–4716.

    Article  CAS  PubMed  Google Scholar 

  • Cook JG, Park CH, Burke TW, Leone G, DeGregori J, Engel A et al. (2002). Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proc Natl Acad Sci USA 99: 1347–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cress WD, Johnson DG, Nevins JR . (1993). A genetic analysis of the E2F1 gene distinguishes regulation by Rb, p107, and adenovirus E4. Mol Cell Biol 13: 6314–6325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimova DK, Dyson NJ . (2005). The E2F transcriptional network: old acquaintances with new faces. Oncogene 24: 2810–2826.

    Article  CAS  PubMed  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad BM, Dettling M, Dudoit S et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giangrande PH, Hallstrom TC, Tunyaplin C, Calame K, Nevins JR . (2003). Identification of the E box factor TFE3 as a functional partner for the E2F3 transcription factor. Mol Cell Biol 23: 3707–3720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He T-C, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . (1998). A simplified system for generating recombinant adenoviruses. Biochem Biophys Res Comm 95: 2509–2514.

    CAS  Google Scholar 

  • Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA . (2000). E2f3 is critical for normal cellular proliferation. Genes Dev 14: 690–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . (2003). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. (2001). Role for E2F in the control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21: 4684–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DG, Schwarz JK, Cress WD, Nevins JR . (1993). Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349–352.

    Article  CAS  PubMed  Google Scholar 

  • Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS et al. (1998). E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 12: 2120–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroni MC, Hickman ES, Denchi EL, Caprara G, Colli E, Cecconi F et al. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3: 552–558.

    Article  CAS  PubMed  Google Scholar 

  • Muller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E et al. (2001). E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15: 267–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevins JR . (1998). Toward an understanding of the functional complexity of the E2F and Retinoblastoma families. Cell Growth Differ 9: 585–593.

    CAS  PubMed  Google Scholar 

  • Nevins JR . (2001). The Rb/E2F pathway and cancer. Hum Mol Genet 10: 699–703.

    Article  CAS  PubMed  Google Scholar 

  • Nevins JR, DeGregori J, Jakoi L, Leone G . (1997). Functional analysis of E2F. Meth Enzymol 283: 205–219.

    Article  CAS  Google Scholar 

  • Polager S, Kalma Y, Berkovich E, Ginsberg D . (2002). E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 21: 437–446.

    Article  CAS  PubMed  Google Scholar 

  • Qin X-Q, Livingston DM, Kaelin WG, Adams PD . (1994). Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 91: 10918–10922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rempel RE, Saenz-Robles MT, Storms R, Morham S, Ishida S, Engel A et al. (2000). Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol Cell 6: 293–306.

    Article  CAS  PubMed  Google Scholar 

  • Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T . (2003). Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424: 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Schlisio S, Halperin T, Vidal M, Nevins JR . (2002). Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J 21: 5775–5786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (1996). Cancer cell cycles. Science 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  • Smith DS, Leone G, DeGregori J, Ahmed MN, Qumsiyeh MB, Nevins JR . (2000). Induction of DNA replication in adult rat neurons by deregulation of the retinoblastoma/E2F G1 cell cycle pathway. 11: 625–633.

  • Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. (2001). The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414: 457–462.

    Article  CAS  PubMed  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL . (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99: 6047–6052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Giangrande P, Nevins JR . (2004). E2Fs link the control of G1/S and G2/M. EMBO J 23: 4615–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs David Turner and Yang Shi for providing U6 promoter and technical advices. We thank Dr Rachel Rempel for providing MEFs. This work was supported by grants from the NIH (CA104663, CA106520, CA112952). Finally, we thank Kaye Culler for her assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Nevins.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, LJ., Chang, J., Bild, A. et al. Compensation and specificity of function within the E2F family. Oncogene 26, 321–327 (2007). https://doi.org/10.1038/sj.onc.1209817

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209817

Keywords

This article is cited by

Search

Quick links