Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF-κB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage

Abstract

The inactive transcription factor NF-κB is localized in the cytoplasm and rapidly responds to a variety of extracellular factors and intracellular stress conditions to initiate multiple cellular responses. While the knowledge regarding NF-κB signaling pathways initiated by extracellular ligands is rapidly expanding, the mechanisms of activation by intracellular stress conditions are not well understood. We recently described a critical role for a small ubiquitin-like modifier (SUMO) modification of NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase, in response to certain genotoxic stress conditions. One important unanswered question is whether the role of this modification is limited to the genotoxic agents or some other signaling pathways also employ SUMOylation of NEMO to regulate NF-κB activation. Here, we report that a variety of other stress conditions, including oxidative stress, ethanol exposure, heat shock and electric shock, also induce NEMO SUMOylation, thus demonstrating that DNA damage per se is not necessary for this NEMO modification to occur. Moreover, combinations of certain SUMO stress and ATM (ataxia telangiectasia mutated) activation conditions lead to NF-κB activation without inducing DNA damage. Our study helps to conceptualize how individual or a combination of different stress conditions may funnel into this previously unappreciated signal transduction mechanism to regulate the activity of the ubiquitous NF-κB transcription factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ager DD, Phillips JW, Columna EA, Winegar RA, Morgan WF . (1991). Analysis of restriction enzyme-induced DNA double-strand breaks in Chinese hamster ovary cells by pulsed-field gel electrophoresis: implications for chromosome damage. Radiat Res 128: 150–156.

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB . (2004). NF-κB: the enemy within. Cancer Cell 6: 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Baeuerle PA, Henkel T . (1994). Function and activation of NF-κB in the immune system. Annu Rev Immunol 12: 141–179.

    Article  CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Banath JP, Olive PL . (2003). Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res 63: 4347–4350.

    CAS  PubMed  Google Scholar 

  • Barzilai A, Rotman G, Shiloh Y . (2002). ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amsterdam) 1: 3–25.

    Article  CAS  Google Scholar 

  • Ducut Sigala JL, Bottero V, Young DB, Shevchenko A, Mercurio F, Verma IM . (2004). Activation of transcription factor NF-κB requires ELKS, an IκB kinase regulatory subunit. Science 304: 1963–1967.

    Article  CAS  PubMed  Google Scholar 

  • Falck J, Coates J, Jackson SP . (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605–611.

    Article  CAS  PubMed  Google Scholar 

  • Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S et al. (2000). ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25: 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Gloire G, Charlier E, Rahmouni S, Volanti C, Chariot A, Erneux C et al. (2006). Restoration of SHIP-1 activity in human leukemic cells modifies NF-κB activation pathway and cellular survival upon oxidative stress. Oncogene advance online publication, 17 April 2006; doi:10.1038/sj.onc.1209542.

    Article  CAS  PubMed  Google Scholar 

  • Habraken Y, Piret B, Piette J . (2001). S phase dependence and involvement of NF-κB activating kinase to NF-κB activation by camptothecin. Biochem Pharmacol 62: 603–616.

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S . (2004). Signaling to NF-κB. Genes Dev 18: 2195–2224.

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka W, Vazquez N, Nieves-Neira W, Chanock SJ, Pommier Y . (1998). Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells. J Clin Invest 102: 1961–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiang YH, Hertzberg R, Hecht S, Liu LF . (1985). Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260: 14873–14878.

    CAS  PubMed  Google Scholar 

  • Hsiang YH, Lihou MG, Liu LF . (1989). Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49: 5077–5082.

    CAS  PubMed  Google Scholar 

  • Huang TT, Feinberg SL, Suryanarayanan S, Miyamoto S . (2002). The zinc finger domain of NEMO is selectively required for NF-κB activation by UV radiation and topoisomerase inhibitors. Mol Cell Biol 22: 5813–5825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang TT, Wuerzberger-Davis SM, Seufzer BJ, Shumway SD, Kurama T, Boothman DA et al. (2000). NF-κB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J Biol Chem 275: 9501–9509.

    Article  CAS  PubMed  Google Scholar 

  • Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S . (2003). Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115: 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Hur GM, Lewis J, Yang Q, Lin Y, Nakano H, Nedospasov S et al. (2003). The death domain kinase RIP has an essential role in DNA damage-induced NF-κB activation. Genes Dev 17: 873–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen-Heininger YM, Poynter ME, Baeuerle PA . (2000). Recent advances towards understanding redox mechanisms in the activation of NF-κB. Free Radic Biol Med 28: 1317–1327.

    Article  CAS  PubMed  Google Scholar 

  • Jasin M . (1996). Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12: 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Kamata H, Manabe T, Oka S, Kamata K, Hirata H . (2002). Hydrogen peroxide activates IκB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519: 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Greten FR . (2005). NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Takahashi T, Kapahi P, Delhase M, Chen Y, Makris C et al. (2001). Oxidative stress and gene expression: the AP-1 and NF-κB connections. Biofactors 15: 87–89.

    Article  CAS  PubMed  Google Scholar 

  • Kim RD, Darling CE, Cerwenka H, Chari RS . (2000). Hypoosmotic stress activates p38, ERK 1 and 2, and SAPK/JNK in rat hepatocytes. J Surg Res 90: 58–66.

    Article  CAS  PubMed  Google Scholar 

  • Kinashi Y, Okayasu R, Iliakis GE, Nagasawa H, Little JB . (1995). Induction of DNA double-strand breaks by restriction enzymes in X-ray-sensitive mutant Chinese hamster ovary cells measured by pulsed-field gel electrophoresis. Radiat Res 141: 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Kretz-Remy C, Munsch B, Arrigo AP . (2001). NF-κB-dependent transcriptional activation during heat shock recovery. Thermolability of the NF-κB.IκB complex. J Biol Chem 276: 43723–43733.

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL et al. (2003). The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278: 6862–6872.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Paull TT . (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304: 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Dimtchev A, Lavin MF, Dritschilo A, Jung M . (1998). A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-κB. Oncogene 17: 1821–1826.

    Article  CAS  PubMed  Google Scholar 

  • Leight ER, Sugden B . (2001). Establishment of an oriP replicon is dependent upon an infrequent, epigenetic event. Mol Cell Biol 21: 4149–4161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Banin S, Ouyang H, Li GC, Courtois G, Shiloh Y et al. (2001). ATM is required for IκB kinase (IKK) activation in response to DNA double strand breaks. J Biol Chem 276: 8898–8903.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Karin M . (1999). Is NF-κB the sensor of oxidative stress? FASEB J 13: 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Verma IM . (2002). NF-κB regulation in the immune system. Nat Rev Immunol 2: 725–734.

    Article  CAS  PubMed  Google Scholar 

  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH et al. (2000). ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404: 613–617.

    Article  CAS  PubMed  Google Scholar 

  • Lukas C, Falck J, Bartkova J, Bartek J, Lukas J . (2003). Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5: 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Desai SD, Liu LF . (2000). SUMO-1 conjugation to human DNA topoisomerase II isozymes. J Biol Chem 275: 26066–26073.

    Article  CAS  PubMed  Google Scholar 

  • Michalke M, Cariers A, Schliess F, Haussinger D . (2000). Hypoosmolarity influences the activity of transcription factor NF-κB in rat H4IIE hepatoma cells. FEBS Lett 465: 64–68.

    Article  CAS  PubMed  Google Scholar 

  • Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH . (1998). In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280: 590–592.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor S, Shumway SD, Amanna IJ, Hayes CE, Miyamoto S . (2004). Regulation of constitutive p50/c-Rel activity via proteasome inhibitor-resistant Iκα degradation in B cells. Mol Cell Biol 24: 4895–4908.

    Article  PubMed  PubMed Central  Google Scholar 

  • Panta GR, Kaur S, Cavin LG, Cortes ML, Mercurio F, Lothstein L et al. (2004). ATM and the catalytic subunit of DNA-dependent protein kinase activate NF-κB through a common MEK/extracellular signal-regulated kinase/p90rsk signaling pathway in response to distinct forms of DNA damage. Mol Cell Biol 24: 1823–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piret B, Piette J . (1996). Topoisomerase poisons activate the transcription factor NF-κB in ACH-2 and CEM cells. Nucleic Acids Res 24: 4242–4248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piret B, Schoonbroodt S, Piette J . (1999). The ATM protein is required for sustained activation of NF-κB following DNA damage. Oncogene 18: 2261–2271.

    Article  CAS  PubMed  Google Scholar 

  • Romashkova JA, Makarov SS . (1999). NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Rotman G, Shiloh Y . (1997). Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? Bioessays 19: 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh H, Hinchey J . (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252–6258.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT . (1998). Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 58: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Sauer H, Rahimi G, Hescheler J, Wartenberg M . (1999). Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem 75: 710–723.

    Article  CAS  PubMed  Google Scholar 

  • Schoonbroodt S, Ferreira V, Best-Belpomme M, Boelaert JR, Legrand-Poels S, Korner M et al. (2000). Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of IκBα in NF-κB activation by an oxidative stress. J Immunol 164: 4292–4300.

    Article  CAS  PubMed  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA . (1991). Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 10: 2247–2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Osthoff K, Los M, Baeuerle PA . (1995). Redox signalling by transcription factors NF-κB and AP-1 in lymphocytes. Biochem Pharmacol 50: 735–741.

    Article  CAS  PubMed  Google Scholar 

  • Sen CK, Packer L . (1996). Antioxidant and redox regulation of gene transcription. FASEB J 10: 709–720.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Venkataraman SL, Dodson GE, Mabb AM, LeBlanc S, Tibbetts RS . (2004). Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress. Proc Natl Acad Sci USA 101: 5898–5903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Siebenlist U, Brown K, Claudio E . (2005). Control of lymphocyte development by NF-κB. Nat Rev Immunol 5: 435–445.

    Article  CAS  PubMed  Google Scholar 

  • Storz P . (2005). Reactive oxygen species in tumor progression. Front Biosci 10: 1881–1896.

    Article  CAS  PubMed  Google Scholar 

  • Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y . (2000). Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5’-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20: 3977–3987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo G, Catalano D, Bellerose G, Mandrekar P . (2001). Interferon alpha and alcohol augment nuclear regulatory factor-κB activation in HepG2 cells, and interferon alpha increases pro-inflammatory cytokine production. Alcohol Clin Exp Res 25: 1188–1197.

    CAS  PubMed  Google Scholar 

  • Tabary O, Muselet C, Escotte S, Antonicelli F, Hubert D, Dusser D et al. (2003). Interleukin-10 inhibits elevated chemokine interleukin-8 and regulated on activation normal T cell expressed and secreted production in cystic fibrosis bronchial epithelial cells by targeting the IκB kinase alpha/beta complex. Am J Pathol 162: 293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB . (2003). Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65: evidence for the involvement of IκBα kinase and Syk protein-tyrosine kinase. J Biol Chem 278: 24233–24241.

    Article  CAS  PubMed  Google Scholar 

  • Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I . (2002). p53 stabilization is decreased upon NF-κB activation: a role for NF-κB in acquisition of resistance to chemotherapy. Cancer Cell 1: 493–503.

    Article  CAS  PubMed  Google Scholar 

  • Ward RJ, Zhang Y, Crichton RR, Piret B, Piette J, de Witte P . (1996). Identification of the nuclear transcription factor NF-κB in rat after in vivo ethanol administration. FEBS Lett 389: 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Liu LF . (1997). Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res 25: 4181–4186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ZH, Shi Y, Tibbetts RS, Miyamoto S . (2006). Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science 311: 1141–1146.

    Article  CAS  PubMed  Google Scholar 

  • Wuerzberger-Davis SM, Chang PY, Berchtold C, Miyamoto S . (2005). Enhanced G2-M arrest by NF-κB-dependent p21 waf1/cip1 induction. Mol Cancer Res 3: 345–353.

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Zhang J, Dai J, Keller ET . (2001). Ethanol activates NF-κB DNA binding and p56lck protein tyrosine kinase in human osteoblast-like cells. Bone 28: 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Ryan JJ, Zhou H . (2004). Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279: 32262–32268.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Bill Sugden for the EBV p220.2 vector and Dr Randy Tibbetts and the Miyamoto lab members for helpful discussion and critical reading of the manuscript. This work was supported in part by the Department of Defense BC010767 to SD, and NIH R01-CA77474, NIH R01-CA81065, and the Shaw Scientist Award from the Milwaukee Foundation to SM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Miyamoto.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wuerzberger-Davis, S., Nakamura, Y., Seufzer, B. et al. NF-κB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene 26, 641–651 (2007). https://doi.org/10.1038/sj.onc.1209815

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209815

Keywords

This article is cited by

Search

Quick links