Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells

Abstract

We and others have reported the presence of novel progastrin (PG)/gastrin receptors on normal and cancerous intestinal cells. We had earlier reported the presence of 33–36 kDa gastrin-binding proteins on cellular membranes of colon cancer cells. The goal of the current study was to identify the protein(s) in the 33–36 kDa band, and analyse its functional significance. A carbodiimide crosslinker was used for crosslinking radio-labeled gastrins to membrane proteins from gastrin/PG responsive cell lines. Native membrane proteins, crosslinked to the ligand, were solubulized and enriched by >1000-fold, and analysed by surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. The peptide masses were researched against the NCBInr database using the ProFound search engine. Annexin II (ANX II) was identified, and confirmed by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. As HCT-116 cells express autocrine PG, the in situ association of PG with ANX II was demonstrated in pulldown assays. Direct binding of PG with ANX II was confirmed in an in vitro binding assay. In order to confirm a functional importance of these observations, sense and anti-sense (AS) ANX II RNA-expressing clones of intestinal epithelial (IEC-18) and human colon cancer (HCT-116) cell lines were generated. AS clones demonstrated a significant loss in the growth response to exogenous (IEC-18) and autocrine (HCT-116) PG. We have thus discovered that membrane-associated ANX II binds PG/gastrins, and partially mediates growth factor effects of the peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 8
Figure 7
Figure 9

Similar content being viewed by others

Abbreviations

Abs:

antibodies

ANX II:

Annexin II

BSA:

bovine serum albumin

CCK2R:

cholecystokinin type 2 receptor

CCK:

choecystokinin octapeptide

CRC:

colorectal cancer

DSS:

disuccinimidyl suberate

EDC:

carbodiimide crosslinker

G17:

gastrin 1–17

MALDI-TOF-MS:

matrix-assisted laser desorption/ionization-time of flight-mass spectrometry

M r :

molecular mass

rhPG:

recombinant human progastrin

SELDI-TOF-MS:

surface-enhanced laser desorption/ionization-time of flight-mass spectrometry

References

  • Aly A, Shulkes A, Baldwin GS . (2001). Short term infusion of glycine-extended gastrin(17) stimulates both proliferation and formation of aberrant crypt foci in rat colonic mucosa. Int J Cancer 94: 307–313.

    Article  CAS  Google Scholar 

  • Baldwin GS, Hollande F, Yang Z, Karelina Y, Paterson A, Strang R et al. (2001). Biologically active recombinant human progastrin(6–80) contains a tightly bound calcium ion. J Biol Chem 276: 7791–7796.

    Article  CAS  Google Scholar 

  • Biener Y, Feinstein R, Mayak M, Kaburagi Y, Kadowaki T, Zick Y . (1996). Annexin II is a novel player in insulin signal transduction. Possible association between annexin II phosphorylation and insulin receptor internalization. J Biol Chem 271: 29489–29496.

    Article  CAS  Google Scholar 

  • Brambilla R, Zippel R, Sturani E, Morello L, Peres A, Alberghina L . (1991). Characterization of the tyrosine phosphorylation of calpactin I (annexin II) induced by platelet-derived growth factor. Biochem J 278(Part 2): 447–452.

    Article  CAS  Google Scholar 

  • Brown D, Yallampalli U, Owlia A, Singh P . (2003). pp60c-Src Kinase mediates growth effects of the full-length precursor progastrin1-80 peptide on rat intestinal epithelial cells, in vitro. Endocrinology 144: 201–211.

    Article  CAS  Google Scholar 

  • Chakladar A, Dubeykovskiy A, Wojtukiewicz LJ, Pratap J, Lei S, Wang TC . (2005). Synergistic activation of the murine gastrin promoter by oncogenic Ras and beta-catenin involves SMAD recruitment. Biochem Biophys Res Commun 336: 190–196.

    Article  CAS  Google Scholar 

  • Chiang Y, Rizzino A, Sibenaller ZA, Wold MS, Vishwanatha JK . (1999). Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Mol Cell Biochem 199: 139–147.

    Article  CAS  Google Scholar 

  • Chiang Y, Schneiderman MH, Vishwanatha JK . (1993). Annexin II expression is regulated during mammalian cell cycle. Cancer Res 53: 6017–6021.

    CAS  PubMed  Google Scholar 

  • Chicone L, Narayan S, Townsend Jr CM, Singh P . (1989). The presence of a 33–40 KDa gastrin binding protein on human and mouse colon cancer. Biochem Biophys Res Commun 164: 512–519.

    Article  CAS  Google Scholar 

  • Chung CY, Erickson HP . (1994). Cell surface annexin II is a high affinity receptor for the alternatively spliced segment of tenascin-C. J Cell Biol 126: 539–548.

    Article  CAS  Google Scholar 

  • Cobb S, Wood T, Ceci J, Varro A, Velasco M, Singh P . (2004). Intestinal expression of mutant and wild-type progastrin significantly increases colon carcinogenesis in response to azoxymethane in transgenic mice. Cancer 100: 1311–1323.

    Article  CAS  Google Scholar 

  • Das S, Sierra JC, Soman KV, Suarez G, Mohammad AA, Dang TA et al. (2005). Differential protein expression profiles of gastric epithelial cells following Helicobacter pylori infection using ProteinChips. J Proteome Res 4: 920–930.

    Article  CAS  Google Scholar 

  • Dockray GJ, Varro A, Dimaline R . (1996). Gastric endocrine cells: gene expression, processing, and targeting of active products. Physiol Rev 76: 767–798.

    Article  CAS  Google Scholar 

  • Emoto K, Yamada Y, Sawada H, Fujimoto H, Ueno M, Takayama T et al. (2001). Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92: 1419–1426.

    Article  CAS  Google Scholar 

  • Ferrand A, Bertrand C, Portolan G, Cui G, Carlson J, Pradayrol L et al. (2005). Signaling pathways associated with colonic mucosa hyperproliferation in mice overexpressing gastrin precursors. Cancer Res 65: 2770–2777.

    Article  CAS  Google Scholar 

  • Frohlich M, Motte P, Galvin K, Takahashi H, Wands J, Ozturk M . (1990). Enhanced expression of the protein kinase substrate p36 in human hepatocellular carcinoma. Mol Cell Biol 10: 3216–3223.

    Article  CAS  Google Scholar 

  • Gerke V, Moss SE . (2002). Annexins: from structure to function. Physiol Rev 82: 331–371.

    Article  CAS  Google Scholar 

  • Ginsberg BH, Cohen RM, Kahn CR, Roth J . (1978). Properties and partial purification of the detergent-solubilized insulin receptor: a demonstration of negative cooperativity in micellar solution. Biochim Biophys Acta 542: 88–100.

    Article  CAS  Google Scholar 

  • Gould KL, Woodgett JR, Isacke CM, Hunter T . (1986). The protein-tyrosine kinase substrate p36 is also a substrate for protein kinase C in vitro and in vivo. Mol Cell Biol 6: 2738–2744.

    Article  CAS  Google Scholar 

  • Gould RJ, Ginsberg BH, Spector AA . (1981). Effects of octyl beta-glucoside on insulin binding to solubilized membrane receptors. Biochemistry 20: 6776–6781.

    Article  CAS  Google Scholar 

  • Hajjar KA, Acharya SS . (2000). Annexin II and regulation of cell surface fibrinolysis. Ann NY Acad Sci 902: 265–271.

    Article  CAS  Google Scholar 

  • Hollande F, Choquet A, Blanc EM, Lee DJ, Bali JP, Baldwin GS . (2001). Involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinases in glycine-extended gastrin-induced dissociation and migration of gastric epithelial cells. J Biol Chem 276: 40402–40410.

    Article  CAS  Google Scholar 

  • Hollande F, Imdahl A, Mantamadiotis T, Ciccotosto GD, Shulkes A, Baldwin GS . (1997). Glycine-extended gastrin acts as an autocrine growth factor in a nontransformed colon cell line. Gastroenterology 113: 1576–1588.

    Article  CAS  Google Scholar 

  • Keutzer JC, Hirschhorn RR . (1990). The growth-regulated gene 1B6 is identified as the heavy chain of calpactin I. Exp Cell Res 188: 153–159.

    Article  CAS  Google Scholar 

  • Koh TJ, Dockray GJ, Varro A, Cahill RJ, Dangler CA, Fox JG et al. (1999). Overexpression of glycine-extended gastrin in transgenic mice results in increased colonic proliferation. J Clin Invest 103: 1119–1126.

    Article  CAS  Google Scholar 

  • Kopin AS, Lee YM, McBride EW, Miller LJ, Lu M, Lin HY et al. (1992). Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci USA 89: 3605–3609.

    Article  CAS  Google Scholar 

  • Kucharczak J, Pannequin J, Camby I, Decaestecker C, Kiss R, Martinez J . (2001). Gastrin induces over-expression of genes involved in human U373 glioblastoma cell migration. Oncogene 20: 7021–7028.

    Article  CAS  Google Scholar 

  • Lambert O, Cavusoglu N, Gallay J, Vincent M, Rigaud JL, Henry JP et al. (2004). Novel organization and properties of annexin 2-membrane complexes. J Biol Chem 279: 10872–10882.

    Article  CAS  Google Scholar 

  • Laumonnier Y, Syrovets T, Burysek L, Simmet T . (2006). Identification of the annexin A2 heterotetramer as a receptor for the plasmin-induced signaling in human peripheral monocytes. Blood 107: 3342–3349.

    Article  CAS  Google Scholar 

  • Lei S, Dubeykovskiy A, Chakladar A, Wojtukiewicz L, Wang TC . (2004). The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways. J Biol Chem 279: 42492–42502.

    Article  CAS  Google Scholar 

  • Mettouchi A, Cabon F, Montreau N, Dejong V, Vernier P, Gherzi R et al. (1997). The c-Jun-induced transformation process involves complex regulation of tenascin-C expression. Mol Cell Biol 17: 3202–3209.

    Article  CAS  Google Scholar 

  • Naldini L, Cirillo D, Moody TW, Comoglio PM, Schlessinger J, Kris R . (1990). Solubilization of the receptor for the neuropeptide gastrin-releasing peptide (bombesin) with functional ligand binding properties. Biochemistry 29: 5153–5160.

    Article  CAS  Google Scholar 

  • Narayan S, Chicione L, Singh P . (1992). Characterization of gastrin binding to colonic mucosal membranes of guinea pigs. Mol Cell Biochem 112: 163–171.

    Article  CAS  Google Scholar 

  • Ottewell PD, Varro A, Dockray GJ, Kirton CM, Watson AJ, Wang TC et al. (2005). COOH-terminal 26-amino acid residues of progastrin are sufficient for stimulation of mitosis in murine colonic epithelium in vivo. Am J Physiol Gastrointest Liver Physiol 288: G541–G549.

    Article  CAS  Google Scholar 

  • Oyama F, Hirohashi S, Shimosato Y, Titani K, Sekiguchi K . (1991). COOH-terminal 26-amino acid residues of progastrin are sufficient for stimulation of mitosis in murine colonic epithelium in vivo. Cancer Res 51: 4876–4881.

    CAS  PubMed  Google Scholar 

  • Ozaki T, Sakiyama S . (1993). Molecular cloning of rat calpactin I heavy-chain cDNA whose expression is induced in v-src-transformed rat culture cell lines. Oncogene 8: 1707–1710.

    CAS  PubMed  Google Scholar 

  • Raynal P, Pollard HB . (1994). Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197: 63–93.

    Article  CAS  Google Scholar 

  • Rengifo-Cam W, Singh P . (2004). Role of progastrins and gastrins and their receptors in GI and pancreatic cancers: targets for treatment. Curr Pharm Des 10: 2345–2358.

    Article  CAS  Google Scholar 

  • Rengifo-Cam W, Singh P . (2005). Anti-apoptotic effects of progastrins are mediated by NfkP65 activation in AR42J pancreatic cancer cells. Gastroenterology 128: A485.

    Google Scholar 

  • Scatchard G . (1949). The attraction of protiens for small molecules and ions. Ann NY Acad Sci 51: 660–672.

    Article  CAS  Google Scholar 

  • Seva C, Dickinson CJ, Yamada T . (1994). Growth-promoting effects of glycine-extended progastrin. Science 265: 410–412.

    Article  CAS  Google Scholar 

  • Siddheshwar RK, Gray JC, Kelly SB . (2001). Plasma levels of progastrin but not amidated gastrin or glycine extended gastrin are elevated in patients with colorectal carcinoma. Gut 48: 47–52.

    Article  CAS  Google Scholar 

  • Singh P, Dai B, Dhruva B, Widen SG . (1994a). Episomal expression of sense and antisense insulin-like growth factor (IGF)-binding protein-4 complementary DNA alters the mitogenic response of a human colon cancer cell line (HT-29) by mechanisms that are independent of and dependent upon IGF-I. Cancer Res 54: 6563–6570.

    CAS  PubMed  Google Scholar 

  • Singh P, Dai B, Yallampalli C, Xu Z . (1994b). Expression of IGF-II and IGF-binding proteins by colon cancer cells in relation to growth response to IGFs. Am J Physiol 267: G608–G617.

    CAS  PubMed  Google Scholar 

  • Singh P, Le S, Beauchamp RD, Townsend Jr CM, Thompson JC . (1987). Inhibition of pentagastrin-stimulated up-regulation of gastrin receptors and growth of mouse colon tumor in vivo by proglumide, a gastrin receptor antagonist. Cancer Res 47: 5000–5004.

    CAS  PubMed  Google Scholar 

  • Singh P, Lu X, Cobb S, Miller BT, Tarasova N, Varro A et al. (2003). Progastrin1-80 stimulates growth of intestinal epithelial cells in vitro via high-affinity binding sites. Am J Physiol Gastrointest Liver Physiol 284: G328–G339.

    Article  CAS  Google Scholar 

  • Singh P, Narayan S, Adiga RB . (1994c). Phosphorylation of pp62 and pp54 src-like proteins in a rat intestinal cell line in response to gastrin. Am J Physiol 267(2 Part 1): G235–G244.

    CAS  PubMed  Google Scholar 

  • Singh P, Owlia A, Espeijo R, Dai B . (1995). Novel gastrin receptors mediate mitogenic effects of gastrin and processing intermediates of gastrin on Swiss 3T3 fibroblasts. Absence of detectable cholecystokinin (CCK)-A and CCK-B receptors. J Biol Chem 270: 8429–8438.

    Article  CAS  Google Scholar 

  • Singh P, Owlia A, Varro A, Dai B, Rajaraman S, Wood T . (1996). Gastrin gene expression is required for the proliferation and tumorigenicity of human colon cancer cells. Cancer Res 56: 4111–4115.

    CAS  PubMed  Google Scholar 

  • Singh P, Velasco M, Given R, Varro A, Wang TC . (2000a). Progastrin expression predisposes mice to colon carcinomas and adenomas in response to a chemical carcinogen. Gastroenterology 119: 162–171.

    Article  CAS  Google Scholar 

  • Singh P, Velasco M, Given R, Wargovich M, Varro A, Wang TC . (2000b). Mice overexpressing progastrin are predisposed for developing aberrant colonic crypt foci in response to AOM. Am J Physiol Gastrointest Liver Physiol 278: G390–G399.

    Article  CAS  Google Scholar 

  • Staros JV, Wright RW, Swingle DM . (1986). Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem 156: 220–222.

    Article  CAS  Google Scholar 

  • Tanaka T, Akatsuka S, Ozeki M, Shirase T, Hiai H, Toyokuni S . (2004). Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis. Oncogene 23: 3980–3989.

    Article  CAS  Google Scholar 

  • Vishwanatha JK, Chiang Y, Kumble KD, Hollingsworth MA, Pour PM . (1993). Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers. Carcinogenesis 14: 2575–2579.

    Article  CAS  Google Scholar 

  • Vishwanatha JK, Kumble S . (1993). Involvement of annexin II in DNA replication: evidence from cell-free extracts of Xenopus eggs. J Cell Sci 105(Part 2): 533–540.

    CAS  PubMed  Google Scholar 

  • Waisman DM . (1995). Annexin II tetramer: structure and function. Mol Cell Biochem 149–150: 301–322.

    Article  Google Scholar 

  • Wang TC, Koh TJ, Varro A, Cahill RJ, Dangler CA, Fox JG et al. (1996). Processing and proliferative effects of human progastrin in transgenic mice. J Clin Invest 98: 1918–1929.

    Article  CAS  Google Scholar 

  • Wank SA, Pisegna JR, DE Weerth A . (1992). Brain and gastrointestinal cholecystokinin receptor family: structure and functional expression. Proc Natl Acad Sci USA 89: 8691–8695.

    Article  CAS  Google Scholar 

  • Wu H, Owlia A, Singh P . (2003). Precursor peptide progastrin(1-80) reduces apoptosis of intestinal epithelial cells and upregulates cytochrome c oxidase Vb levels and synthesis of ATP. Am J Physiol Gastrointest Liver Physiol 285: G1097–G1110.

    Article  CAS  Google Scholar 

  • Wu H, Rao GN, Dai B, Singh P . (2000). Autocrine gastrins in colon cancer cells Up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-3. J Biol Chem 275: 32491–32498.

    Article  CAS  Google Scholar 

  • Zhang QX, Baldwin GS . (1994). Structures of the human cDNA and gene encoding the 78 kDa gastrin-binding protein and of a related pseudogene. Biochim Biophys Acta 1219: 567–575.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant #s CA097959 and CA72992 from the National Cancer Institute to P Singh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Singh.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Wu, H., Clark, C. et al. Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells. Oncogene 26, 425–440 (2007). https://doi.org/10.1038/sj.onc.1209798

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209798

Keywords

This article is cited by

Search

Quick links