Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of the NF-κB pathway by the leukemogenic TEL-Jak2 and TEL-Abl fusion proteins leads to the accumulation of antiapoptotic IAP proteins and involves IKKα

Abstract

Abnormal activation of tyrosine kinases and of signaling pathways they control plays a critical role in the neoplastic process of human hematopoietic malignancy. The nuclear factor-κB (NF-κB) pathway is one of the signalings activated by the TEL-Jak2 and TEL-Abl oncoproteins and required for their antiapoptotic activity. To define the signal relay responsible for this activation, we used mouse embryonic fibroblast (MEF) cells and observed that TEL-Jak2- and TEL-Abl-mediated NF-κB induction was abolished in cells lacking the IκB kinase (IKK)α but not in IKKβ−/− cells. Similar observations were performed with oncogenic forms of the FMS-like tyrosine kinase 3 (Flt-3) involved in the pathogenesis of one-third of acute myeloid leukemias. Rescue of TEL-Jak2-mediated NF-κB activation was obtained with a kinase-proficient form of IKKα in IKKα−/− MEF. Hematopoietic cells transformed by TEL-Jak2 and TEL-Abl showed sustained IKKα activity without promotion of NF-κB2/p100 processing, generally associated to IKKα functions. Furthermore, IAP1, IAP2 and XIAP, which are central regulators of the NF-κB-mediated survival pathway, were highly expressed in cells transformed by these oncoproteins. Our results indicate that these oncogenic tyrosine kinases preferentially use an IKKα-dependent mechanism to induce a persistent NF-κB activity and allow the production of antiapoptotic effectors that participate to their leukemogenic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Baldwin AS . (2001). J Clin Invest 107: 241–246.

  • Baumgartner B, Weber M, Quirling M, Fischer C, Page S, Adam M et al. (2002). Leukemia 16: 2062–2071.

  • Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al. (2000). EMBO J 19: 3337–3348.

  • Beraud C, Henzel WJ, Baeuerle PA . (1999). Proc Natl Acad Sci USA 96: 429–434.

  • Besancon F, Atfi A, Gespach C, Cayre YE, Bourgeade MF . (1998). Proc Natl Acad Sci USA 95: 8081–8086.

  • Bjornsti MA, Houghton PJ . (2004). Nat Rev Cancer 4: 335–348.

  • Constantino Rosa Santos S, Monni R, Bouchaert I, Bernard O, Gisselbrecht S, Gouilleux F et al. (2001). FEBS Lett 497: 148–152.

  • Davis RE, Brown KD, Siebenlist U, Staudt LM . (2001). J Exp Med 194: 1861–1874.

  • Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG et al. (1999). Oncogene 18: 3316–3323.

  • Deng J, Miller SA, Wang HY, Xia W, Wen Y, Zhou BP et al. (2002). Cancer Cell 2: 323–334.

  • Digicaylioglu M, Lipton SA . (2001). Nature 412: 641–647.

  • Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A . (1999). J Exp Med 190: 1025–1032.

  • Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS . (1999). Blood 93: 3044–3052.

  • Fuchs SY, Spiegelman VS, Kumar KG . (2004). Oncogene 23: 2028–2036.

  • Ghosh S, Karin M . (2002). Cell 109: S81–S96.

  • Gilliland DG, Griffin JD . (2002). Blood 100: 1532–1542.

  • Gilmore TD, Kalaitzidis D, Liang MC, Starczynowski DT . (2004). Oncogene 23: 2275–2286.

  • Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. (2004). Cell 118: 285–296.

  • Guasch G, Ollendorff V, Borg JP, Birnbaum D, Pebusque MJ . (2001). Mol Cell Biol 21: 8129–8142.

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. (2001). Blood 98: 2301–2307.

  • Hanson JL, Anest V, Reuther-Madrid J, Baldwin AS . (2003). J Biol Chem 278: 34910–34917.

  • Hayden MS, Ghosh S . (2004). Genes Dev 18: 2195–2224.

  • Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG . (1999). Nat Cell Biol 1: 190–192.

  • Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M et al. (1999). Science 284: 316–320.

  • Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al. (2004). Nat Genet 36: 453–461. E-pub 18 April 2004.

  • Huang W-C, Chen J-J, Inoue H, Chen C-C . (2003). J Immunol 170: 4767–4775.

  • Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C et al. (1996). Cell 86: 787–798.

  • Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Kronke M et al. (2003). J Exp Med 198: 341–347.

  • Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . (2002). Blood 99: 310–318.

  • Kirchner D, Duyster J, Ottmann O, Schmid RM, Bergmann L, Munzert G . (2003). Exp Hematol 31: 504–511.

  • Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C . (2000). Leukemia 14: 399–402.

  • Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M et al. (1999). J Exp Med 189: 1839–1845.

  • Ling L, Cao Z, Goeddel DV . (1998). Proc Natl Acad Sci USA 95: 3792–3797.

  • Liston P, Fong WG, Korneluk RG . (2003). Oncogene 22: 8568–8580.

  • Livak KJ, Schmittgen TD . (2001). Methods 25: 402–408.

  • Luftig M, Yasui T, Soni V, Kang MS, Jacobson N, Cahir-McFarland E et al. (2004). Proc Natl Acad Sci USA 101: 141–146.

  • Matta H, Chaudhary PM . (2004). Proc Natl Acad Sci USA 101: 9399–9404.

  • Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R . (1999). J Exp Med 190: 1033–1038.

  • Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J . (2001). Mol Cell Biol 21: 5299–5305.

  • Million RP, Aster J, Gilliland DG, Van Etten RA . (2002). Blood 99: 4568–4577.

  • Million RP, Harakawa N, Roumiantsev S, Varticovski L, Van Etten RA . (2004). Mol Cell Biol 24: 4685–4695.

  • Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T . (2003). Blood 102: 2969–2975.

  • Monni R, Santos SC, Mauchauffe M, Berger R, Ghysdael J, Gouilleux F et al. (2001). Oncogene 20: 849–858.

  • Mordmuller B, Krappmann D, Esen M, Wegener E, Scheidereit C . (2003). EMBO Rep 4: 82–87.

  • Nawata R, Yujiri T, Nakamura Y, Ariyoshi K, Takahashi T, Sato Y et al. (2003). Oncogene 22: 7774–7780.

  • O'Mahony AM, Montano M, Van Beneden K, Chen LF, Greene WC . (2004). J Biol Chem 12: 12.

  • Pahl HL . (1999). Oncogene 18: 6853–6866.

  • Pallard C, Gouilleux F, Benit L, Cocault L, Souyri M, Levy D et al. (1995). EMBO J 14: 2847–2856.

  • Perrotti D, Calabretta B . (2004). Oncogene 23: 3222–3229.

  • Petro JB, Rahman SM, Ballard DW, Khan WN . (2000). J Exp Med 191: 1745–1754.

  • Piccolella E, Spadaro F, Ramoni C, Marinari B, Costanzo A, Levrero M et al. (2003). J Immunol 170: 2895–2903.

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. (2004). Nature 431: 461–466.

  • Rayet B, Gelinas C . (1999). Oncogene 18: 6938–6947.

  • Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS . (1998). Genes Dev 12: 968–981.

  • Richmond A . (2002). Nat Rev Immunol 2: 664–674.

  • Rocha S, Campbell KJ, Perkins ND . (2003). Mol Cell 12: 15–25.

  • Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L et al. (2003). Blood 106: 1392–1399.

  • Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G et al. (2001). Science 293: 1495–1499.

  • Sun SC, Ballard DW . (1999). Oncogene 18: 6948–6958.

  • Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S et al. (2000). Clin Cancer Res 6: 1796–1803.

  • Tang ED, Wang CY, Xiong Y, Guan KL . (2003). J Biol Chem 278: 37297–37305.

  • Ten RM, McKinstry MJ, Trushin SA, Asin S, Paya CV . (1999). J Immunol 163: 3851–3857.

  • Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I . (2002). Cancer Cell 1: 493–503.

  • Voss J, Posern G, Hannemann JR, Wiedemann LM, Turhan AG, Poirel H et al. (2000). Oncogene 19: 1684–1690.

  • Weil R, Israel A . (2004). Curr Opin Immunol 16: 374–381.

  • Xiao G, Cvijic ME, Fong A, Harhaj EW, Uhlik MT, Waterfield M et al. (2001). EMBO J 20: 6805–6815.

  • Xiao G, Fong A, Sun SC . (2004). J Biol Chem 279: 30099–30105.

Download references

Acknowledgements

We are grateful to R Weil and V Baud for helpful discussion and to E Delabesse and D Baudry-Bluteau for their help with the real-time PCRs. This work was supported in part by grants from the Ligue Nationale Contre le Cancer (LNCC-équipe labelisée). SM is supported by a Ministère de l'Education Nationale, de la Recherche et des Technologies (MENRT) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Penard-Lacronique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinge, S., Monni, R., Bernard, O. et al. Activation of the NF-κB pathway by the leukemogenic TEL-Jak2 and TEL-Abl fusion proteins leads to the accumulation of antiapoptotic IAP proteins and involves IKKα. Oncogene 25, 3589–3597 (2006). https://doi.org/10.1038/sj.onc.1209390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209390

Keywords

This article is cited by

Search

Quick links