Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells

A Corrigendum to this article was published on 08 November 2007

Abstract

The highly invasive behavior of glioblastoma cells contributes to the morbidity and mortality associated with these tumors. The integrin-mediated adhesion and migration of glioblastoma cells on brain matrix proteins is enhanced by stimulation with growth factors, including platelet-derived growth factor (PDGF). As focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, has been shown to promote cell migration in various other cell types, we analysed its role in glioblastoma cell migration. Forced overexpression of FAK in serum-starved glioblastoma cells plated on recombinant (rec)-osteopontin resulted in a twofold enhancement of basal migration and a ninefold enhancement of PDGF-BB-stimulated migration. Both expression of mutant FAK(397F) and the downregulation of FAK with small interfering (si) RNA inhibited basal and PDGF-stimulated migration. FAK overexpression and PDGF stimulation was found to increase the phosphorylation of the Crk-associated substrate (CAS) family member human enhancer of filamentation 1 (HEF1), but not p130CAS or Src-interacting protein (Sin)/Efs, although the levels of expression of these proteins was similar. Moreover downregulation of HEF1 with siRNA, but not p130CAS, inhibited basal and PDGF-stimulated migration. The phosphorylated HEF1 colocalized with vinculin and was associated almost exclusively with 0.1% Triton X-100 insoluble material, consistent with its signaling at focal adhesions. FAK overexpression promoted invasion through normal brain homogenate and siHEF1 inhibited this invasion. Results presented here suggest that HEF1 acts as a necessary and specific downstream effector of FAK in the invasive behavior of glioblastoma cells and may be an effective target for treatment of these tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CAS:

crk-associated substrate

Efs:

embryonic Fyn substrate

EGF:

epidermal growth factor

EGFR:

EGF receptor

FAK:

focal adhesion kinase

HEF1:

human enhancer of filamentation 1

IP:

immunoprecipitation

PDGF:

platelet-derived growth factor BB

PDGFr:

PDGF receptor

rec:

recombinant

si:

small interfering

Sin:

Src-interacting protein

References

  • Alexandropoulos K, Donlin LT, Xing L, Regelmann AG . (2003). Immunol Rev 192: 181–195.

  • Almeida EA, Ilic D, Han Q, Hauck CR, Jin F, Kawakatsu H et al. (2000). J Cell Biol 149: 741–754.

  • Astier A, Manie SN, Avraham H, Hirai H, Law SF, Zhang Y et al. (1997). J Biol Chem 272: 19719–19730.

  • Brabek J, Constancio SS, Shin NY, Pozzi A, Weaver AM, Hanks SK . (2004). Oncogene 23: 7406–7415.

  • Calalb MB, Polte TR, Hanks SK . (1995). Mol Cell Biol 15: 954–963.

  • Cary LA, Han DC, Polte TR, Hanks SK, Guan JL . (1998). J Cell Biol 140: 211–221.

  • Cho SY, Klemke RL . (2000). J Cell Biol 149: 223–236.

  • Cooper LA, Shen TL, Guan JL . (2003). Mol Cell Biol 23: 8030–8041.

  • Ding Q, Grammer JR, Nelson MA, Guan J-L, Stewart Jr JE, Gladson CL . (2005). J Biol Chem 280: 6802–6815.

  • Ding Q, Stewart Jr J, Grammer JR, Prince CW, Chang P-L, Trikha M et al. (2002). Cancer Res 62: 5336–5343.

  • Ding Q, Stewart Jr J, Olman MA, Klobe MR, Gladson CL . (2003). J Biol Chem 278: 39882–39891.

  • Dolfi F, Garcia-Guzman M, Ojaniemi M, Nakamura H, Matsuda M, Vuori K . (1998). Proc Natl Acad Sci USA 95 (26): 15394–15399.

  • Fashena SJ, Einarson MB, O'Neill GM, Patriotis C, Golemis EA . (2002). J Cell Science 115: 99–111.

  • Ffrench-Constant C, Colognato H . (2004). Trends Cell Biol 14: 678–686.

  • Gladson CL, Wilcox JN, Sanders L, Gillespie GY, Cheresh DA . (1995). J Cell Sci 108: 947–956.

  • Harte MT, Hildebrand JD, Burnham MR, Bouton AH, Parsons JT . (1996). J Biol Chem 271: 13649–13655.

  • Haskell H, Natarajan M, Hecker T, Ding Q, Stewart Jr J, Grammer JR et al. (2003). Clin Cancer Res 9: 2157–2165.

  • Hauck CR, Hsia DA, Schlaepfer DD . (2000). J Biol Chem 275: 41092–41099.

  • Hecker TP, Ding Q, Rege T, Hanks S, Gladson CL . (2004). Oncogene 23: 3962–3971.

  • Hecker TP, Grammer JR, Gillespie GY, Stewart Jr J, Gladson CL . (2002). Cancer Res 62: 2699–2707.

  • Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B et al. (1992). Cancer Res 52: 3213–3219.

  • Ishino M, Ohba T, Sasaki H, Sasaki T . (1995). Oncogene 11: 2331–2338.

  • Jones G, Machado Jr J, Merlo A . (2001). Cancer Res 61: 4978–4981.

  • Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M . (1998). Genes Dev 12: 3331–3336.

  • Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA . (1998). J Cell Biol 140: 961–972.

  • Law SF, Estojak J, Wang B, Mysliwiec T, Kruh G, Golemis EA . (1996). Mol Cell Biol 16: 3327–3337.

  • Law SF, O'Neill GM, Fashena SJ, Einarson MB, Golemis EA . (2000). Mol Cell Biol 20: 5184–5195.

  • Lee JW, Juliano RL . (2002). Biochim Biophys Acta 1542: 23–31.

  • Lipinski CA, Tran NL, Bay C, Kloss J, McDonough WS, Beaudry C et al. (2003). Mol Cancer Res 1: 323–332.

  • Manie SN, Beck AR, Astier A, Law SF, Canty T, Hirai H et al. (1997). J Biol Chem 272: 4230–4236.

  • Merlo A, Bettler B . (2004). Sci STKE 229: 18.

  • Merrill RA, See AW, Wertheim ML, Clagett-Dame M . (2004). Dev Dyn 231: 564–575.

  • Minegishi M, Tachibana K, Sato T, Iwata S, Nojima Y, Morimoto C . (1996). J Exp Med 184: 1365–1375.

  • Nakamoto T, Sakai R, Ozawa K, Yazaki Y, Hirai H . (1996). J Biol Chem 271: 8959–8965.

  • O'Neill GM, Fashena SJ, Golemis EA . (2000). Trends Cell Biol 10: 111–119.

  • Polte TR, Hanks SK . (1995). Proc Natl Acad Sci USA 92: 10678–10682.

  • Ridley AJ, Paterson HF, Johnston CL, Diekman D, Hall A . (1992). Cell 70: 401–410.

  • Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H et al. (1994). EMBO J 13: 3748–3756.

  • Schaller MD, Hildebrand JD, Parsons JT . (1999). Mol Biol Cell 10: 3489–3505.

  • Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT . (1994). Mol Cell Biol 14: 1680–1688.

  • Schlaepfer DD, Mitra SK . (2004). Curr Opin Gen Dev 14: 92–101.

  • Shen Y, Schaller MD . (1999). Mol Biol Cell 10: 2507–2518.

  • Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH et al. (2000). Nat Cell Biol 2: 249–256.

  • Tachibana K, Urano T, Fujita H, Ohashi Y, Kamiguchi K, Iwata S et al. (1997). J Biol Chem 272: 29083–29090.

  • van Seventer GA, Salmen HUJ, Law SF, O'Neill GM, Mullen MM, Franz AM et al. (2001). Eur J Immunol 31: 1417–1427.

  • Vuori K, Hirai H, Aizawa S, Ruoslahti E . (1996). Mol Cell Biol 16: 2606–2613.

  • Wang D, Grammer JR, Cobbs CS, Stewart Jr JE, Liu Z, Rhoden R et al. (2000). J Cell Science 113: 4221–4230.

  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B . (1987). Proc Natl Acad Sci USA 84: 6899–6903.

  • Zagzag D, Friedlander DR, Margolis B, Grumet M, Semenza GL, Zhong H et al. (2000). Pediatr Neurosurg 33: 49–55.

  • Zrihan-Licht S, Avraham S, Jiang S, Fu Y, Avraham HK . (2004). Int J Oncol 24: 153–159.

Download references

Acknowledgements

We thank Mrs Jo Self for preparation of the manuscript. This work was supported by Grants CA97110, CA97247 (Proj. 5), and CA109748 from the National Institutes of Health, National Cancer Institute to CLG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C L Gladson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natarajan, M., Stewart, J., Golemis, E. et al. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene 25, 1721–1732 (2006). https://doi.org/10.1038/sj.onc.1209199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209199

Keywords

This article is cited by

Search

Quick links