Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor-suppression function of transcription factor USF2 in prostate carcinogenesis

Abstract

Although the transcription factor USF2 has been implicated in the regulation of cellular growth and proliferation, it is unknown whether alterations in USF2 contribute to tumorigenesis and tumor development. We examined the role of USF2 in prostate tumorigenesis. Western blot analysis revealed markedly decreased USF2 levels in three androgen-independent prostate cancer cell lines, PC-3, DU145, and M12, as compared to nontumorigenic prostate epithelial cells or the androgen-dependent cell line, LNCaP. Ectopic expression of USF2 in PC-3 cells did not affect the cell proliferation rate of PC-3 cells on plastic surfaces. However, it dramatically decreased anchorage-independent growth of PC-3 cells in soft agar (90–98% inhibition) and the invasion capability (80% inhibition) of PC-3 cells in matrix gel assay. Importantly, expression of USF2 in PC-3 cells inhibited the tumorigenicity of PC-3 cells in an in vivo nude mice xenograft model (80–90% inhibition). These results suggest that USF2 has tumor-suppression function. Consistent with its function in tumor suppression, we found that the USF2 protein is present in normal prostate epithelial cells but absent in 18 of 42 (43%) human prostate cancer tissues (P=0.015). To further examine the functional role of USF2 in vivo, we generated mice with genetic deletion of USF2 gene. We found that USF2-null mice displayed marked prostate hyperplasia at a young age, suggesting that USF2 is involved in the normal growth and differentiation of prostate. Together, these studies demonstrate that USF2 has tumor-suppressor function and plays a role in prostate carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aperlo C, Boulukos KE, Pognonec P . (1996). Eur J Biochem 241: 249–253.

  • Astbury C, Jackson-Cook CK, Culp SH, Paisley TE, Ware JL . (2001). Gene Chromosome Cancer 31: 143–155.

  • Bae VL, Jackson-Cook CK, Brothman AR, Maygarden SJ, Ware JL . (1994). Int J Cancer 58: 721–729.

  • Bello D, Webber MM, Kleinman HK, Wartinger DD, Rhim JS . (1997). Carcinogenesis 18: 1215–1223.

  • Bendall AJ, Molloy PL . (1994). Nucleic Acids Res 22: 2801–2810.

  • Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P et al. (1999). Gene Dev 13: 966–977.

  • Blain SW, Scher HI, Cordon-Cardo C, Koff A . (2003). Cancer Cell 3: 111–115.

  • Bookstein R . (2001). In: Chung LWK, Isaacs WB and Simons JW (eds). Prostate Cancer: Biology, Genetics, and the New Therapeutics. Totowa, New Jersey: Human Press, pp. 61–94.

    Google Scholar 

  • Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G et al. (2000). Cancer Res 60: 6111–6115.

  • Choe C, Chen N, Sawadogo M . (2005). Exp Cell Res 302: 1–10.

  • Colella R, Jackson T, Goodwyn E . (2004). Biotech Histochem 79: 121–127.

  • Davis PL, Miron A, Andersen LM, Iglehart JD, Marks JR . (1999). Oncogene 18: 6000–6012.

  • Dehm SM, Tindall DJ . (2005). Expert Rev Anticancer Ther 5: 63–74.

  • Gao X, Honn KV . (1999). Advance Oncobiology. Greenwich, Conn: JAI Press Inc., pp. 85–122.

    Book  Google Scholar 

  • Gonzalgo ML, Isaacs WB . (2003). J Urol 170: 2444–2452.

  • Gregor PD, Sawadogo M, Roeder RG . (1990). Gene Dev 4: 1730–1740.

  • Isaacs W, Kainu T . (2001). Epidemiol Rev 23: 36–41.

  • Ismail PM, Lu T, Sawadogo M . (1999). Oncogene 18: 5582–5591.

  • Jaiswal AS, Narayan S . (2001). J Cell Biochem 81: 262–277.

  • Karayi MK, Markham AF . (2004). Prostate Cancer PD 7: 6–20.

  • Kivinen A, Patrikainen L, Kurkela R, Porvari K, Vihko P . (2004). Prostate 59: 190–202.

  • Kozlowski JM, Sensibar JA . (1999). Human Cell Culture Volume II: Cancer Cell Lines Part 2 Masters JRW and Palsson B (eds). Dordrecht, Boston, London: Klumer Academic Publishers, pp. 305–331.

    Google Scholar 

  • Luo X, Sawadogo M . (1996a). P Natl Acad Sci USA 93: 1308–1313.

  • Luo X, Sawadogo M . (1996b). Mol Cell Biol 16: 1367–1375.

  • Macleod K . (2000). Curr Opin Genet Dev 10: 81–93.

  • Maddison LA, Sutherland BW, Barrios RJ, Greenberg NM . (2004). Cancer Res 64: 6018–6025.

  • Mosmann T . (1983). J Immunol Methods 65: 55–63.

  • Nupponen NN, Kakkola L, Koivisto P, Visakorpi T . (1998). Am J Pathol 153: 141–148.

  • Pawar SA, Szentirmay MN, Hermeking H, Sawadogo M . (2004). Oncogene 23: 6125–6135.

  • Peehl DM . (2002). Culture of Epithelial Cells Freshney RI and Freshney MG (eds). New York: Wiley-Liss Inc., pp. 171–194.

    Book  Google Scholar 

  • Plymate SR, Tennant MK, Culp SH, Woodke L, Marcelli M, Colman I et al. (2004). Prostate 61: 276–290.

  • Qyang Y, Luo X, Lu T, Ismail PM, Krylov D, Vinson C et al. (1999). Mol Cell Biol 19: 1508–1517.

  • Reisman D, Rotter V . (1993). Nucleic Acids Res 21: 345–350.

  • Ruddon RW (ed). (1995). Cancer Biology. Oxford, New York: Oxford University Press, Inc., pp. 96–140.

    Google Scholar 

  • Sawadogo M . (1988). J Biol Chem 263: 11994–12001.

  • Sawadogo M, Roeder RG . (1985). Cell 43: 165–175.

  • Schmid HP, McNeal JE . (1992). Am J Surg Pathol 16: 184–191.

  • Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA et al. (2004). Cancer Res 64: 2270–2305.

  • Sirito M, Lin Q, Maity T, Sawadogo M . (1994). Nucleic Acids Res 22: 427–433.

  • Sirito M, Lin Q, Deng JM, Behringer RR, Sawadogo M . (1998). P Natl Acad Sci USA 95: 3758–3763.

  • Steingrimsson E, Sawadogo M, Gilbert DJ, Zervos AS, Brent R, Blanar MA et al. (1995). Genomics 28: 179–183.

  • Szentirmay MN, Yang HX, Pawar SA, Vinson C, Sawadogo M . (2003). J Biol Chem 278: 37231–37240.

  • Vakar-Lopez F, Cheng CJ, Kim J, Shi GG, Troncoso P, Tu SM et al. (2004). J Pathol 203: 688–695.

  • Voeller HJ, Augustus M, Madike V, Bova GS, Carter KC, Gelmann EP . (1997). Cancer Res 57: 4455–4459.

Download references

Acknowledgements

This work was supported by the University Cancer Foundation and core Grant CA16672 at the University of Texas MD. Anderson Cancer Center (MS), Institutional Research Grant IRG326058 at the University of Texas MD Anderson Cancer Center (NC), and Department of the Army W81XWH-05-1-0111(DMP). We thank Dr M Ittmann for confirming the prostate alteration of male USF2-null mice, Drs SH Lin, G Lozano, MH Lee, and K Keyomarsi for critical reading of the manuscript, and Ms A Lopez for statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, N., Szentirmay, M., Pawar, S. et al. Tumor-suppression function of transcription factor USF2 in prostate carcinogenesis. Oncogene 25, 579–587 (2006). https://doi.org/10.1038/sj.onc.1209079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209079

Keywords

This article is cited by

Search

Quick links