Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Src in synaptic transmission and plasticity

Abstract

In the central nervous system (CNS), Src and other Src family kinases are widely expressed and are abundant in neurons. Src has been implicated in proliferation and differentiation during the development of the CNS. But Src is highly expressed in fully differentiated neurons in the developed CNS, implying additional functions of this kinase. Over the past decade, a large body of evidence has accumulated showing that a main function of Src is to upregulate the activity of N-methyl-D-aspartate (NMDA) receptors and other ion channels. NMDA receptors (NMDARs) are a principal subtype of glutamate receptors, which mediate fast excitatory transmission at most central synapses. In this review, we focus on Src as a regulator of NMDARs and on the role of Src in NMDAR-dependent synaptic plasticity. We also describe recent studies that give insights into the regulation of Src itself at glutamatergic synapses. By upregulating the function of NMDARs, Src gates the production of NMDAR-dependent synaptic potentiation and plasticity. Thus, Src may be critical for processes underlying physiological plasticity, including learning and memory, and pathological plasticity, such as pain and epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ali DW and Salter MW . (2001). Curr. Opin. Neurobiol., 11, 336–342.

  • Bliss TV and Collingridge GL . (1993). Nature, 361, 31–39.

  • Blomberg F, Cohen RS and Siekevitz P . (1977). J. Cell Biol., 74, 204–225.

  • Boulanger LM, Lombroso PJ, Raghunathan A, During MJ, Wahle P and Naegele JR . (1995). J.Neurosci., 15, 1532–1544.

  • Carlin RK, Grab DJ, Cohen RS and Siekevitz P . (1980). J. Cell Biol., 86, 831–845.

  • Cataldi M, Taglialatela M, Guerriero S, Amoroso S, Lombardi G, di Renzo G and Annunziato L . (1996). J. Biol. Chem., 271, 9441–9446.

  • Chang BY, Conroy KB, Machleder EM and Cartwright CA . (1998). Mol. Cell. Biol., 18, 3245–3256.

  • Chen C and Leonard JP . (1996). J. Neurochem., 67, 194–200.

  • Cohen RS, Blomberg F, Berzins K and Siekevitz P . (1977). J. Cell Biol., 74, 181–203.

  • Contractor A and Heinemann SF . (2002). Sci. STKE, 2002, RE14.

  • Cooke MP and Perlmutter RM . (1989). New Biol., 1, 66–74.

  • Cotton PC and Brugge JS . (1983). Mol. Cell. Biol., 3, 1157–1162.

  • Dikic I, Tokiwa G, Lev S, Courtneidge SA and Schlessinger J . (1996). Nature, 383, 547–550.

  • Dingledine R, Borges K, Bowie D and Traynelis SF . (1999). Pharmacol. Rev., 51, 7–61.

  • Fadool DA, Holmes TC, Berman K, Dagan D and Levitan IB . (1997). J. Neurophysiol., 78, 1563–1573.

  • Finkbeiner S and Greenberg ME . (1996). Neuron, 16, 233–236.

  • Gervais FG and Veillette A . (1995). Mol. Cell. Biol., 15, 2393–2401.

  • Gingrich JR, Pelkey KA, Fam SR, Huang Y, Petralia RS, Wenthold RJ and Salter MW . (2004). Proc. Natl. Acad. Sci. USA, 101, 6237–6242.

  • Grant SG, O'Dell TJ, Karl KA, Stein PL, Soriano P and Kandel ER . (1992). Science, 258, 1903–1910.

  • Guo W, Zou S, Guan Y, Ikeda T, Tal M, Dubner R and Ren K . (2002). J. Neurosci., 22, 6208–6217.

  • Hering H and Sheng M . (2001). Nat. Rev. Neurosci., 2, 880–888.

  • Huang Y, Lu W, Ali DW, Pelkey KA, Pitcher GM, Lu YM, Aoto H, Roder JC, Sasaki T, Salter MW and MacDonald JF . (2001). Neuron, 29, 485–496.

  • Husi H, Ward MA, Choudhary JS, Blackstock WP and Grant SG . (2000). Nat. Neurosci., 3, 661–669.

  • Kalia LV and Salter MW . (2003). Neuropharmacology, 45, 720–728.

  • Kohr G and Seeburg PH . (1996). J. Physiol., 492, 445–452.

  • Koles L, Wirkner K and Illes P . (2001). Neurochem. Res., 26, 925–932.

  • Lauri SE, Taira T and Rauvala H . (2000). Neuroreport, 11, 997–1000.

  • Lei G, Xue S, Chery N, Liu Q, Xu J, Kwan CL, Fu YP, Lu YM, Liu M, Harder KW and Yu XM . (2002). EMBO J., 21, 2977–2989.

  • Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH and Smit AB . (2004). J. Biol. Chem., 279, 987–1002.

  • Lu WY, Xiong ZG, Lei S, Orser BA, Dudek E, Browning MD and MacDonald JF . (1999). Nat. Neurosci., 2, 331–338.

  • Lu YM, Roder JC, Davidow J and Salter MW . (1998). Science, 279, 1363–1367.

  • Malenka RC and Nicoll RA . (1999). Science, 285, 1870–1874.

  • Manabe T, Aiba A, Yamada A, Ichise T, Sakagami H, Kondo H and Katsuki M . (2000). J. Neurosci., 20, 2504–2511.

  • Marino MJ, Rouse ST, Levey AI, Potter LT and Conn PJ . (1998). Proc. Natl. Acad. Sci. USA, 95, 11465–11470.

  • Meldrum BS . (2000). J. Nutr., 130, 1007S–1015S.

  • Moss SJ, Gorrie GH, Amato A and Smart TG . (1995). Nature, 377, 344–348.

  • Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T and Yamamoto T . (2001). J. Biol. Chem., 276, 693–699.

  • Oyama T, Goto S, Nishi T, Sato K, Yamada K, Yoshikawa M and Ushio Y . (1995). Neuroscience, 69, 869–880.

  • Pelkey KA, Askalan R, Paul S, Kalia LV, Nguyen TH, Pitcher GM, Salter MW and Lombroso PJ . (2002). Neuron, 34, 127–138.

  • Petrone A, Battaglia F, Wang C, Dusa A, Su J, Zagzag D, Bianchi R, Casaccia-Bonnefil P, Arancio O and Sap J . (2003). EMBO J., 22, 4121–4131.

  • Ponniah S, Wang DZ, Lim KL and Pallen CJ . (1999). Curr. Biol., 9, 535–538.

  • Poyton RO, Duhl DM and Clarkson GH . (1992). Trends Cell Biol., 2, 369–375.

  • Roche S, Fumagalli S and Courtneidge SA . (1995a). Science, 269, 1567–1569.

  • Roche S, Koegl M, Barone MV, Roussel MF and Courtneidge SA . (1995b). Mol. Cell. Biol., 15, 1102–1109.

  • Rosenblum K, Dudai Y and Richter-Levin G . (1996). Proc. Natl. Acad. Sci. USA, 93, 10457–10460.

  • Rostas JA, Brent VA, Voss K, Errington ML, Bliss TV and Gurd JW . (1996). Proc. Natl. Acad. Sci. USA, 93, 10452–10456.

  • Rudd CE, Trevillyan JM, Dasgupta JD, Wong LL and Schlossman SF . (1988). Proc. Natl. Acad. Sci. USA, 85, 5190–5194.

  • Salter MW . (1998). Biochem. Pharmacol., 56, 789–798.

  • Salter MW and Kalia LV . (2004). Nat. Rev. Neurosci., 5, 317–328.

  • Sanna PP, Berton F, Cammalleri M, Tallent MK, Siggins GR, Bloom FE and Francesconi W . (2000). Proc. Natl. Acad. Sci. USA, 97, 8653–8657.

  • Satoh K, Takeuchi M, Oda Y, Deguchi-Tawarada M, Sakamoto Y, Matsubara K, Nagasu T and Takai Y . (2002). Genes Cells, 7, 187–197.

  • Shaw AS, Amrein KE, Hammond C, Stern DF, Sefton BM and Rose JK . (1989). Cell, 59, 627–636.

  • Soderling TR and Derkach VA . (2000). Trends Neurosci., 23, 75–80.

  • Soltys BJ and Gupta RS . (1999). Trends Biochem. Sci., 24, 174–177.

  • Soltys BJ and Gupta RS . (2000). Int. Rev. Cytol., 194, 133–196.

  • Stehelin D, Varmus HE, Bishop JM and Vogt PK . (1976). Nature, 260, 170–173.

  • Sudol M and Hanafusa H . (1986). Mol. Cell. Biol., 6, 2839–2846.

  • Suzuki T and Okumura-Noji K . (1995). Biochem. Biophys. Res. Commun., 216, 582–588.

  • Swope SL, Moss SI, Raymond LA and Huganir RL . (1999). Adv. Second Messenger Phosphoprot. Res., 33, 49–78.

  • Thomas SM, Soriano P and Imamoto A . (1995). Nature, 376, 267–271.

  • Thornton C, Yaka R, Dinh S and Ron D . (2003). J. Biol. Chem., 278, 23823–23829.

  • Veillette A, Bookman MA, Horak EM and Bolen JB . (1988). Cell, 55, 301–308.

  • Walikonis RS, Jensen ON, Mann M, Provance Jr DW, Mercer JA and Kennedy MB . (2000). J. Neurosci., 20, 4069–4080.

  • Wan Q, Man HY, Braunton J, Wang W, Salter MW, Becker L and Wang YT . (1997). J. Neurosci., 17, 5062–5069.

  • Wang K, Hackett JT, Cox ME, van Hoek M, Lindstrom JM and Parsons SJ . (2004). J. Biol. Chem., 279, 8779–8786.

  • Wang YT and Salter MW . (1994). Nature, 369, 233–235.

  • Wang YT, Yu XM and Salter MW . (1996). Proc. Natl. Acad. Sci. USA, 93, 1721–1725.

  • Woolf CJ and Salter MW . (2000). Science, 288, 1765–1769.

  • Xiong ZG, Raouf R, Lu WY, Wang LY, Orser BA, Dudek EM, Browning MD and MacDonald JF . (1998). Mol. Pharmacol., 54, 1055–1063.

  • Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A and Ron D . (2002). Proc. Natl. Acad. Sci. USA, 99, 5710–5715.

  • Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N, Isobe T and Yamauchi T . (2004). J. Neurochem., 88, 759–768.

  • Yu XM, Askalan R, Keil GJ and Salter MW . (1997). Science, 275, 674–678.

  • Yu XM and Salter MW . (1998). Nature, 396, 469–474.

  • Yu XM and Salter MW . (1999). Proc. Natl. Acad. Sci. USA, 96, 7697–7704.

  • Zhao YH, Krueger JG and Sudol M. . (1990). Oncogene, 5, 1629–1635.

  • Zheng XM, Wang Y and Pallen CJ . (1992). Nature, 359, 336–339.

  • Ziff EB . (1997). Neuron, 19, 1163–1174.

Download references

Acknowledgements

This work is supported by the Canadian Institutes of Health Research (CIHR). MWS is a member of the CIHR group on ‘The Synapse’ and holds a Canada Research Chair (Tier I) in Neuroplasticity and Pain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W Salter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalia, L., Gingrich, J. & Salter, M. Src in synaptic transmission and plasticity. Oncogene 23, 8007–8016 (2004). https://doi.org/10.1038/sj.onc.1208158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208158

Keywords

This article is cited by

Search

Quick links