Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Stat3 upregulates MEK5 expression in human breast cancer cells

Abstract

The constitutive activation of signal transducer and activator of transcription 3 (Stat3) is frequently detected in breast cancer cell lines but not in normal breast epithelial cells. Stat3 has been classified as an oncogene, because constitutively active Stat3 can mediate oncogenic transformation in cultured cells and tumor formation in nude mice. Since Stat3 appears to play an important role in breast cancer, it is of interest to investigate Stat3-regulated genes and elucidate Stat3-mediated oncogenesis. In this study, we investigated the Stat3-regulated genes in human breast epithelial cells. Upon overexpression of Stat3-C, a constitutively active Stat3 form, in nonmalignant telomerase immortalized breast (TERT) cells, the total mRNA was extracted and subjected to Affymetrix microarray analysis. Our results showed that mitogen-activated protein kinase kinase 5 (MEK5) was markedly induced (more than 22-fold increase, P<0.001) by Stat3-C expression. RT–PCR result also demonstrated that MEK5 mRNA was significantly induced by Stat3-C in TERT cells. The upregulation of MEK5 by Stat3-C was further confirmed by Western blot in MCF10A breast epithelial cells. Furthermore, in MDA-MB-435s breast carcinoma cells, which express high levels of activated Stat3 and MEK5, MEK5 protein was significantly reduced by using Stat3 short interfering RNA. The reduction of MEK5 was consistent with Stat3 knockdown in this breast carcinoma cell line. We also investigated MEK5 expression in different breast carcinoma cell lines and breast cancer tissues using tissue array analysis. Compared with nonmalignant breast epithelial cells or normal tissues without constitutively active Stat3 signaling, MEK5 protein levels are remarkably higher in breast carcinoma cell lines and cancer tissues with constitutively activated Stat3. Taken together, our findings suggest that constitutively active Stat3 upregulates MEK5 in the breast epithelial cells. MEK5 may be one of the Stat3-regulated genes and plays its essential roles in oncogenesis mediated by aberrantly activated Stat3 signaling in breast carcinomatosis and malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alas S and Bonavida B . (2001). Cancer Res., 61, 5137–5144.

  • Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R and Bucala R . (2002). Cancer Res., 62, 5881–5887.

  • Bhat NR and Zhang P . (1999). J. Neurochem, 72, 112–119.

  • Bowman T, Garcia R, Turkson J and Jove R . (2000). Oncogene, 19, 2474–2488.

  • Bromberg J and Darnell JJ . (2000). Oncogene, 19, 2468–2473.

  • Bromberg J, Wrzeszcznska M, Devgan G, Zhao Y, Pestell R, Albanese C and Darnell JJ . (1999). Cell, 98, 295–303.

  • Buettner R, Mora L and Jove R . (2002). Clin. Cancer Res., 8, 945–954.

  • Cameron S, Abe J, Malik S, Che W and Yang J . (2004). J. Biol. Chem., 279, 1506–1512.

  • Chao T, Hayashi M, Tapping R, Kato Y and Lee J . (1999). J. Biol. Chem., 274, 36035–36038.

  • Chayama K, Papst P, Garrington T, Pratt J, Ishizuka T, Webb S, Ganiatsas S, Zon L, Sun W, Johnson G and Gelfand E . (2001). Proc. Natl. Acad. Sci. USA, 98, 4599–4604.

  • Dalton W and Jove R . (1999). Semin. Oncol., 26, 23–27.

  • Darnell JJ, Kerr I and Stark G . (1994). Science, 264, 1415–1421.

  • Dent P, Yacoub A, Fisher P, Hagan M and Grant S . (2003). Oncogene, 22, 5885–5896.

  • Garcia R and Jove R . (1998). J. Biomed. Sci., 5, 79–85.

  • Garcia R, Yu C, Hudnall A, Catlett R, Nelson K, Smithgall T, Fujita D, Ethier S and Jove R . (1997). Cell Growth Differ., 8, 1267–1275.

  • Garcia RBT, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A and Jove R . (2002). Oncogene., 20, 2499–2513.

  • Giambernardi T, Grant G, Taylor G, Hay R, Maher V, McCormick J and Klebe R . (1998). Matrix Biol., 16, 483–496.

  • Howe L and Dannenberg A . (2003). J. Mammary Gland Biol. Neoplasia, 8, 31–43.

  • Kato Y, Kravchenko V, Tapping R, Han J, Ulevitch RJ and Lee JD . (1997). EMBO J., 16, 7054–7066.

  • Kauraniemi P, Hautaniemi S, Autio R, Astola J, Monni O, Elkahloun A and Kallioniemi A . (2004). Oncogene, 23, 1010–1013.

  • Liu H, Ma Y, Cole S, Zander C, Chen K, Karras J and Pope R . (2003). Blood, 102, 344–352.

  • Martinez A, Vos M, Guedez L, Kaur G, Chen Z, Garayoa M, Pio R, Moody T, Stetler-Stevenson W, Kleinman H and Cuttitta F . (2002). J. Natl. Cancer Inst., 94, 1226–1237.

  • Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T and Yokota T . (1999). EMBO J., 18, 4261–4269.

  • Mehta P, Jenkins B, McCarthy L, Thilak L, Robson C, Neal D and Leung H . (2003). Oncogene, 22, 1381–1389.

  • Mulloy R, Salinas S, Philips A and Hipskind R . (2003). Oncogene, 22, 5387–5398.

  • Nakamura K and Johnson G . (2003). J. Biol. Chem., 278, 36989–36992.

  • Nielsen M, Kaestel C, Eriksen K, Woetmann A, Stokkedal T, Kaltoft K, Geisler C, Ropke C and Odum N . (1999). Leukemia, 13, 735–738.

  • Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, Chang A, Kraker A, Jove R and Yu H . (2002a). Oncogene, 21, 7001–7010.

  • Niu G, Wright K, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis L, Karras J, Bromberg J, Pardoll D, Jove R and Yu H . (2002b). Oncogene, 21, 2000–2008.

  • Niwa H, Burdon T, Chambers I and Smith A . (1998). Genes Dev., 12, 2048–2060.

  • Oehler M, Fischer D, Orlowska-Volk M, Herrle F, Kieback D, Rees M and Bicknell R . (2003). Br. J. Cancer, 89, 1927–1933.

  • Oehler M, Hague S, Rees M and Bicknell R . (2002). Oncogene, 21, 2815–2821.

  • Okano JI and Rustgi AK . (2001). J. Biol. Chem., 276, 19555–19564.

  • Pollett J, Trudel S, Stern D, Li Z and Stewart A . (2002). Blood, 100, 3819–3821.

  • Raz R, Lee C, Cannizzaro L, d'Eustachio P and Levy D . (1999). Proc. Natl. Acad. Sci. USA, 96, 2846–2851.

  • Real P, Sierra A, De Juan A, Segovia J, Lopez-Vega J and Fernandez-Luna J . (2002). Oncogene, 21, 7611–7618.

  • Rebbaa A, Chou P and Mirkin B . (2001). Mol. Med., 7, 393–400.

  • Schaefer T, Sanders L and Nathans D . (1995). Proc. Natl. Acad. Sci. USA, 92, 9097–9101.

  • Seidel H, Milocco L, Lamb P, Darnell JJ, Stein R and Rosen J . (1995). Proc. Natl. Acad. Sci. USA, 92, 3041–3045.

  • Shen Y, Schlessinger K, Zhu X, Meffre E, Quimby F, Levy D and Darnell JJ . (2004). Mol. Cell. Biol., 24, 407–419.

  • Song H, Ethier S, Dziubinski M and Lin J . (2004a). Biochem. Biophys. Res. Commun., 314, 143–150.

  • Song H, Sondak V, Barber D, Reid T and Lin J . (2004b). Int. J. Oncol., 24, 1017–1026.

  • Stephanou A, Isenberg D, Akira S, Kishimoto T and Latchman D . (1998). Biochem. J., 330, 189–195.

  • Stephanou A, Isenberg D, Nakajima K and Latchman D . (1999). J. Biol. Chem., 274, 1723–1728.

  • Sun W, Kesavan K, Schaefer B, Garrington T, Ware M, Johnson N, Gelfand E and Johnson G . (2001). J. Biol. Chem., 276, 5093–5100.

  • Tan KB, Yong W and Putti T . (2004). Histopathology, 44, 24–28.

  • Ueno H, Nakamura H, Inoue M, Imai K, Noguchi M, Sato H, Seiki M and Okada Y . (1997). Cancer Res., 57, 2055–2060.

  • Watson C and Miller W . (1995). Br. J. Cancer, 71, 840–844.

  • Wei L, Kuo M, Chen C, Chou C, Lai K, Lee C and Hsieh C . (2003). Oncogene, 22, 1517–1527.

  • Weldon C, Scandurro A, Rolfe K, Clayton J, Elliott S, Butler N, Melnik L, Alam J, McLachlan J, Jaffe B, Beckman B and Burow M . (2002). Surgery, 132, 293–301.

  • Wells J, Boyd K, Fry C, Bartley S and Farnham P . (2000). Mol. Cell. Biol., 20, 5797–5807.

  • Xu B, Stippec S, Lenertz L, Lee B, Zhang W, Lee Y and Cobb M . (2004). J. Biol. Chem., 279, 7826–7831.

  • Yoshizumi M, Abe J, Tsuchiya K, Berk B and Tamaki T . (2003). J. Pharmacol. Sci., 91, 172–176.

  • Zhou G, Bao Z and Dixon J . (1995). J. Biol. Chem., 270, 12665–12669.

Download references

Acknowledgements

We thank Dr Bromberg (Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY) for generously providing Stat3-C vector. We also thank Dr Stephen Either at the University of Michigan for providing TERT, MCF10A, SUM-159, and SUM1315 cell lines. This work was supported by the NIH-RO1 Grant CA096714 to Jiayuh Lin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayuh Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Jin, X. & Lin, J. Stat3 upregulates MEK5 expression in human breast cancer cells. Oncogene 23, 8301–8309 (2004). https://doi.org/10.1038/sj.onc.1208026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208026

Keywords

This article is cited by

Search

Quick links