Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

p53-dependent and p53-independent pathways for radiation-induced immature thymocyte differentiation

Abstract

The pre-T-cell receptor (TCR) delivers essential survival/differentiation signals to the developing thymocytes. Severe combined immunodeficient (SCID) and recombination-activating gene (RAG)-deficient mice are unable to assemble antigen receptor genes, and therefore cannot express a pre-TCR. Consequently, T lymphocyte differentiation is arrested at an early stage in the thymus of these animals, and immature thymocytes are eliminated through apoptotic processes. This maturation arrest can be relieved and thymocyte differentiation rescued after the exposure of these mice to whole-body γ-irradiation. Whereas the promotion of immature thymocyte survival/differentiation was shown to require p53 activity in irradiated SCID mice, it was suggested, on the other hand, that p53 activation prevents immature thymocytes survival/differentiation in irradiated RAG-deficient mice. However, SCID mice have impaired responses to ionizing radiation. In this paper, we analysed p53 requirement in radiation-induced thymocyte differentiation in CD3ɛΔ5/Δ5 mice, where pre-TCR deficiency also results in an early block of lymphocyte development. Our results show at the cellular and molecular levels that, in this DNA repair-proficient model, irradiation-induced thymocyte differentiation proceeds either by a p53-dependent or by a p53-independent pathway, which differ in their sensitivity to the radiation dose delivered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 5
Figure 2
Figure 3
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

SCID:

severe combined immune deficiency

RAG:

recombination-activating gene

IR:

ionizing radiation

TCR:

T-cell receptor

DN:

double negative

DP:

double positive

SP:

single positive

Gy:

gray

wt:

wild type

DNA-PKcs:

catalytic subunit of the protein kinase activated by DNA

References

  • Araki R, Fujimori A, Hamatani K, Mita K, Saito T, Mori M, Fukumura R, Morimyo M, Muto M, Itoh M, Tatsumi K and Abe M . (1997). Proc. Natl. Acad. Sci. USA, 94, 2438–2443.

  • Bogue MA, Zhu C, Aguilar-Cordova E, Donehower LA and Roth DB . (1996). Genes Dev., 10, 553–565.

  • Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, Nieruchalski M and May E . (2000). Oncogene, 19, 649–660.

  • Candéias SM, Durum SK and Muegge K . (1997). Biochimie, 79, 607–612.

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML and Wyllie AH . (1993). Nature, 362, 849–852.

  • Danska JS, Holland DP, Mariathasan S, Williams KM and Guidos CJ . (1996). Mol. Cell. Biol., 16, 5507–5517.

  • Danska JS, Pflumio F, Williams CJ, Huner O, Dick JE and Guidos CJ . (1994). Science, 266, 450–455.

  • DeJarnette JB, Sommers CL, Huang K, Woodside KJ, Emmons R, Katz K, Shores EW and Love PE . (1998). Proc. Natl. Acad. Sci. USA, 95, 14909–14914.

  • Gallagher M, Candéias S, Martinon C, Borel E, Malissen M, Marche PN and Jouvin-Marche E . (1998). Eur. J. Immunol., 28, 3878–3885.

  • Guidos CJ, Williams CJ, Grandal I, Knowles G, Huang MT and Danska JS . (1996). Genes Dev., 10, 2038–2054.

  • Guidos CJ, Williams CJ, Wu GE, Paige CJ and Danska JS . (1995). J. Exp. Med., 181, 1187–1195.

  • Haks MC, Krimpenfort P, van den Brakel JH and Kruisbeek AM . (1999). Immunity, 11, 91–101.

  • Hall SR, Campbell LE and Meek DW . (1996). Nucleic Acids Res., 24, 1119–1126.

  • Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ and Mak TW . (2000). Science, 287, 1824–1827.

  • Hoffman WH, Biade S, Zilfou JT, Chen J and Murphy M . (2002). J. Biol. Chem., 277, 3247–3257.

  • Hugo P, Waanders GA, Scollay R, Petrie HT and Boyd RL . (1991). Eur. J. Immunol., 21, 835–838.

  • Jhappan C, Yusufzai TM, Anderson S, Anver MR and Merlino G . (2000). Mol. Cell. Biol., 20, 4075–4083.

  • Jiang D, Lenardo MJ and Zuniga-Pflucker C . (1996). J. Exp. Med., 183, 1923–1928.

  • Lakin ND and Jackson SP . (1999). Oncogene, 18, 7644–7655.

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA and Jacks T . (1993). Nature, 362, 847–849.

  • Malissen M, Gillet A, Ardouin L, Bouvier G, Trucy J, Ferrier P, Vivier E and Malissen B . (1995). EMBO J., 14, 4641–4653.

  • Mancini S, Candéias SM, Fehling HJ, von Boehmer H, Jouvin-Marche E and Marche PN . (1999). J. Immunol., 163, 6053–6059.

  • Mancini SJ, Candéias SM, Di Santo JP, Ferrier P, Marche PN and Jouvin-Marche E . (2001). J. Immunol., 167, 4485–4493.

  • Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S and Papaioannou VE . (1992). Cell, 68, 869–877.

  • Murphy WJ, Durum SK, Anver MR, Ferris DK, McVicar DW, O'Shea JJ, Ruscetti SK, Smith MR, Young HA and Longo DL . (1994). J. Immunol., 153, 1004–1014.

  • Nacht M and Jacks T . (1998). Cell. Growth Differ., 9, 131–138.

  • Nacht M, Strasser A, Chan YR, Harris AW, Schlissel M, Bronson RT and Jacks T . (1996). Genes Dev., 10, 2055–2066.

  • Nelson WG and Kastan MB . (1994). Mol. Cell Biol., 14, 1815–1823.

  • Newton K, Harris AW and Strasser A . (2000). EMBO J., 19, 931–941.

  • Nussenzweig A, Sokol K, Burgman P, Li L and Li GC . (1997). Proc. Natl. Acad. Sci. USA, 94, 13588–13593.

  • Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F and Stall AM . (1992). Cell, 68, 855–867.

  • Sionov RV and Haupt Y . (1999). Oncogene, 18, 6145–6157.

  • Strasser A, Harris AW, Jacks T and Cory S . (1994). Cell, 79, 329–339.

  • von Boehmer H, Aifantis I, Feinberg J, Lechner O, Saint-Ruf C, Walter U, Buer J and Azogui O . (1999). Curr. Opin. Immunol., 11, 135–142.

  • Wang B, Wang N, Salio M, Sharpe A, Allen D, She J and Terhorst C . (1998). J. Exp. Med., 188, 1375–1380.

  • Wang B, Wang N, Whitehurst CE, She J, Chen J and Terhorst C . (1999). J. Immunol., 162, 88–94.

  • Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH and Levine AJ . (2000). Genes. Dev., 14, 981–993.

  • Zuniga-Pflucker JC, Jiang D, Schwartzberg PL and Lenardo MJ . (1994). J. Exp. Med., 180, 1517–1521.

Download references

Acknowledgements

We thank Véronique Collin for assistance with FACS analysis, Irène Maréchal and Nicolas Chaumontel for animal care and Drs R Ceredig, HR McDonald and C Viret for the critical reading of the manuscript. This work was supported by institutional grants from the ‘Institut National de la Santé et de la Recherche Médicale’, the ‘Commissariat à l'Energie Atomique’ and the Joseph Fourier University, and by a specific action (‘Thématiques Prioritaires’) from the ‘Région Rhône-Alpes. SJCM was supported by grants from the ‘Ministère de l'Education Nationale, de la Recherche et de la Technologie’ and from ‘La Ligue Nationale pour la Recherche contre le Cancer’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Michel Candéias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candéias, S., Mancini, S., Touvrey, C. et al. p53-dependent and p53-independent pathways for radiation-induced immature thymocyte differentiation. Oncogene 23, 1922–1929 (2004). https://doi.org/10.1038/sj.onc.1207320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207320

Keywords

This article is cited by

Search

Quick links