Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells

Abstract

Thymidine phosphorylase (TP; also known as platelet-derived endothelial cell growth factor, PD-ECGF) is an angiogenic factor that is chemotactic for endothelial cells and has been found to induce neovascularization in vivo. TP is frequently overexpressed in human solid tumors, where its expression has been correlated with increased tumor microvessel density, invasion, and metastasis, and shorter patient survival. In this report, TP activity in the WiDr colon carcinoma cell line was found to be induced 100-fold by tumor necrosis factor (TNFα), a secretory product of activated macrophages that has indirect angiogenic activities. Increased TP activity was accompanied by increased TP mRNA levels and without an increase in mRNA stability. TNFα-induced TP mRNA levels were reduced by mithramycin, a DNA-binding transcription inhibitor specific for GC-rich sequences. Transcriptional regulation by TNFα was confirmed by transient transfection of WiDr with upstream TP sequences in a luciferase reporter construct. Deletion analysis of the reporter pinpointed two regions of the TP promoter with regulatory elements for both TNFα-inducible and basal expression, and they contained, respectively, three and one consensus binding sites for the Sp1-family of transcription factors. One additional region contributed only to basal TP expression, and it contained three Sp1 sites. TNFα-induced TP expression decreased when point mutations were made in three of the four Sp1 sites postulated to contribute to both basal and TNFα-inducible expression. Electrophoretic mobility shift assays further demonstrated binding of nuclear Sp1 to these three sites. Sp1-binding activity was also increased in cells treated with TNFα. These studies establish a role for Sp1 in the regulation of expression of the angiogenic factor TP in colon cancer WiDr cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

EMSA:

electrophoretic mobility shift assay

PD-ECGF:

platelet-derived endothelial cell growth factor

TNFα:

tumor necrosis factor

TP:

thymidine phosphorylase

VEGF:

vascular endothelial growth factor

References

  • Beutler B, Cerami A . 1986 Nature 320: 584–588

  • Blume SW, Snyder RC, Ray R, Thomas S, Koller CA, Miller DM . 1991 J. Clin. Invest. 88: 1613–1621

  • Bussolino F, Camussi G, Baglioni C . 1988 J. Biol. Chem. 263: 11856–11861

  • Cakouros D, Cockerill PN, Bert AG, Mital R, Roberts DC, Shannon MF . 2001 J. Immunol. 167: 302–310

  • Cao D, Nimmakayalu MA, Wang F, Zhang D, Handschumacher RE, Bray-Ward P, Pizzorno G . 1999 Cancer Res. 59: 4997–5001

  • Cheng N, Chen J . 2001 J. Biol. Chem. 276: 13771–13777

  • Eda H, Fujimoto K, Watanabe S, Ishikawa T, Ohiwa T, Tatsuno K, Tanaka Y, Ishitsuka H . 1993a Jpn. J. Cancer Res. 84: 341–347

  • Eda H, Fujimoto K, Watanabe S, Ura M, Hino A, Tanaka Y, Wada K, Ishitsuka H . 1993b Cancer Chemother. Pharmacol. 32: 333–338

  • Engels K, Fox SB, Whitehous RM, Gatter KC, Harris AL . 1997 J. Pathol. 182: 414–420

  • Finkenzeller G, Technau A, Marme D . 1995 Biochem. Biophys. Res. Comm. 208: 432–439

  • Finkenzeller G, Sparacio A, Technau A, Marme D, Siemeister G . 1997 Oncogene 15: 669–676

  • Finnis C, Dodsworth N, Pollitt CE, Carr G, Sleep D . 1993 Eur. J. Biochem. 212: 201–210

  • Folkman J, Shing Y . 1992 J. Biol. Chem. 267: 10931–10934

  • Frater-Schroder M, Risau W, Hallmann R, Gautschi P, Bohlen P . 1987 Proc. Natl. Acad. Sci. (USA) 84: 5277–5281

  • Giraudo E, Primo L, Audero E, Gerber H-P, Koolwijk P, Soker S, Klagsburn M, Ferrera N, Bussolino F . 1998 J. Biol. Chem. 273: 22128–22135

  • Goto H, Kohno K, Sone S, Akiyama S, Kuwano M, Ono M . 2001 Cancer Res. 61: 469–473

  • Greenwel P, Inagaki Y, Hu W, Walsh M, Ramirez F . 1997 J. Biol. Chem. 272: 19738–19745

  • Griffiths L, Dachs GU, Bicknell R, Harris AL, Stratford IJ . 1997 Cancer Res. 57: 570–572

  • Hagiwara K, Stenman G, Honda H, Sahlin P, Andersson A, Miyazono K, Heldin CH, Ishikawa F, Takaku F . 1991 Mol. Cell. Biol. 11: 2125–2132

  • Hanahan D, Folkman J . 1996 Cell 86: 353–364

  • Hirano F, Tanaka H, Hirano Y, Hiramoto M, Handa H, Makino I, Scheiderfeit C . 1998 Molec. Cell. Biol. 18: 1266–1274

  • Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W, Heldin CH . 1989 Nature 338: 557–562

  • Kadonga JT, Jones KA, Tjian R . 1986 Trends Biochem. Sci. 11: 20–25

  • Kim I, Kim JH, Ryu YS, Liu M, Koh GY . 2000 Biochem. Biophys. Res. Commun. 269: 361–365

  • Koukourakis MI, Giatromanolaki A, Kakolyris S, O'Byrn KJ, Apostolikas N, Skarlatos J, Gatter KC, Harris AL . 1998 Br. J. Cancer 77: 1696–1703

  • Krehan A, Ansuini H, Bocher O, Grein S, Wirkner U, Pyerin W . 2000 J. Biol. Chem. 275: 18327–18336

  • Lee AHS, Dublin EA, Bobrow LG . 1999 J. Pathol. 187: 285–290

  • Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N . 1987 Nature 329: 630–632

  • Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, Sawada T, Onoda N, Kato Y, Sowa M . 1996 Br. J. Cancer 73: 884–888

  • Miyazono K, Okabe T, Urabe A, Takaku F, Heldin CH . 1987 J. Biol. Chem. 262: 4098–4103

  • Naar AM, Ryu S, Tjian R . 1998 Cold Spring Harbor Symp. Quant. Biol. 63: 189–199

  • O'Byrne KJ, Koukourakis MI, Giatromanolaki A, Cox G, Turley H, Steward WP, Gatter K, Harris AL . 2000 Br. J. Cancer 82: 1427–1432

  • Okamura K, Sato Y, Matsuda T, Hamanaka R, Ono M, Kohno K, Kuwano M . 1991 J. Biol. Chem. 266: 19162–19165

  • Polverini PJ, Leibovich SJ . 1984 Lab. Invest. 51: 635–642

  • Pugh BF, Tjian R . 1991 Genes Dev. 5: 1935–1945

  • Rosenbaum JT, Howes Jr EL, Rubin RM, Samples JR . 1988 Am. J. Pathol. 133: 47–53

  • Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, Kuwano M . 1996 J. Biol. Chem. 271: 28220–28228

  • Sato N, Goto T, Haranaka K, Satomi N, Nariuchi H, Mano-Hirano Y, Sawasaki Y . 1986 J. Natl. Cancer Inst. 76: 1113–1121

  • Sato N, Fukuda K, Nariuchi H, Sagara N . 1987 J. Natl. Cancer Inst. 79: 1383–1389

  • Sawada N, Ishikawa T, Fukase Y, Nishida M, Yoshikubo T, Ishitsuka H . 1998 Clin. Cancer Res. 4: 1013–1019

  • Schreiber E, Matthias P, Muller MM, Schaffner W . 1989 Nucleic Acids Res. 17: 6419

  • Schwartz EL, Baptiste N, Wadler S, Makower D . 1995 J. Biol. Chem. 270: 19073–19077

  • Schwartz EL, Wan E, Wang F, Baptiste N . 1998 Cancer Res. 58: 1551–1557

  • Seki N, Kodama J, Hongo A, Miyagi Y, Yoshinouchi M, Kudo T . 2000 Eur. J. Cancer 36: 68–73

  • Shimaoka S, Matsushita S, Nitanda T, Matsuda A, Nioh T, Suenga T, Nishimata Y, Akiba S, Akiyama S, Nishimata H . 2000 Cancer 88: 2220–2227

  • Smale ST . 1997 Biochim. Biophys. Acta 1351: 73–88

  • Sumizawa T, Furukawa T, Haraguchi M, Yoshimura A, Takeyasu A, Ishizawa M, Yamada Y, Akiyama S . 1993 J. Biochem. (Tokyo) 114: 9–14

  • Suske G . 1999 Gene 238: 291–300

  • Takahashi Y, Bucana CD, Liu W, Yoneda J, Kitadai Y, Cleary KR, Ellis LM . 1996 J. Natl. Cancer Inst. 88: 1146–1151

  • Takahashi Y, Bucana CD, Akagi Y, Liu W, Cleary KR, Mai M, Ellis LM . 1998 Clin. Cancer Res. 4: 429–434

  • Takebayashi Y, Akiyama S, Akiba S, Yamada K, Miyadera K, Sumizawa T, Yamada Y, Murata F, Aikou T . 1995 Cancer Lett. 95: 57–62

  • Takebayashi Y, Akiyama S, Akiba S, Yamada K, Miyadera K, Sumizawa T, Yamada Y, Murata F, Aikou T . 1996 J. Natl. Cancer Inst. 88: 1110–1117

  • Tevaearai HT, Laurent PL, Suardet L, Eliason JF, Givel JC, Odartchenko N . 1992 Eur. J. Cancer 28: 368–372

  • van Triest B, Pinedo HM, Blauuwgeers JLG, van Diest PJ, Schoenmakers PS, Voorn DA, Smid K, Hoekman K, Hoitsma HFW, Peters GJ . 2000 Clin. Cancer Res. 6: 1063–1072

  • Watanabe S, Uchida T . 1995 Biochem. Biophys. Res. Comm. 216: 265–272

  • Watanabe S, Hino A, Wada K, Eliason JF, Uchida T . 1995 J. Biol. Chem. 270: 12191–12196

  • Zhang D, Cao D, Russell R, Pizzorno G . 2001 Cancer Res. 61: 6899–6905

  • Zimmerman M, Seidenberg J . 1964 J. Biol. Chem. 239: 2618–2621

Download references

Acknowledgements

This study was supported by grants R01-CA54422, R01-CA89352, and P01-CA13330 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward L Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, G., Lenzi, M. & Schwartz, E. The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells. Oncogene 21, 8477–8485 (2002). https://doi.org/10.1038/sj.onc.1206030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206030

Keywords

This article is cited by

Search

Quick links