Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Targeting the renin–angiotensin–aldosterone system in atrial fibrillation: from pathophysiology to clinical trials

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Freestone B, Lip GYH . Epidemiology and costs of cardiac arrhythmias. In: Lip GYH, Godtfredsen J (eds). Cardiac Arrhythmias: A Clinical Approach. Mosby: Edinburgh, 2003, pp 3–24.

    Google Scholar 

  2. Lip GY, Felmeden DC, Li-Saw-Hee FL, Beevers DG . Hypertensive heart disease. A complex syndrome or a hypertensive ’cardiomyopathy‘? Eur Heart J 2000; 21 (20): 1653–1665.

    Article  CAS  PubMed  Google Scholar 

  3. Gage BF et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 2001; 285: 2864–2870.

    Article  CAS  PubMed  Google Scholar 

  4. Bautista LE . Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens 2003; 17: 223–230.

    Article  CAS  PubMed  Google Scholar 

  5. Schram MT et al. Aggressive antihypertensive therapy based on hydrochlorothiazide, candesartan or lisinopril as initial choice in hypertensive type II diabetic individuals: effects on albumin excretion, endothelial function and inflammation in a double-blind, randomized clinical trial. J Hum Hypertens 2005; 19: 429–437.

    Article  CAS  PubMed  Google Scholar 

  6. Bautista LE, Vera LM, Arenas IA, Gamarra G . Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens 2005; 19: 149–154.

    Article  CAS  PubMed  Google Scholar 

  7. Lip GYH . Hypertension and the prothrombotic state. J Hum Hypertens 2000; 14: 687–690.

    Article  CAS  PubMed  Google Scholar 

  8. Lip GYH . Does atrial fibrillation confer a hypercoagulable state? Lancet 1995; 346: 1313–1314.

    Article  CAS  PubMed  Google Scholar 

  9. Freestone B, Beevers DG, Lip GY . The renin–angiotensin–aldosterone system in atrial fibrillation: a new therapeutic target? J Hum Hypertens 2004; 18: 461–465.

    Article  CAS  PubMed  Google Scholar 

  10. Choudhury A, Varughese G, Lip GYH . Targeting the Renin Angiotensin Aldosterone System in Atrial Fibrillation: a shift from electrical to structural therapy? Exp Opin Pharmacother 2005 (in press).

  11. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA . Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995; 92: 1954–1968.

    Article  CAS  PubMed  Google Scholar 

  12. Hertervig EJ et al. Evidence for electrical remodelling of the atrial myocardium in patients with atrial fibrillation. A study using the monophasic action potential recording technique. Clin Physiol Funct Imaging 2002; 22: 8–12.

    Article  PubMed  Google Scholar 

  13. Lau CP, Tse HF . Electrical remodelling of chronic atrial fibrillation. Clin Exp Pharmacol Physiol 1997; 24: 982–983.

    Article  CAS  PubMed  Google Scholar 

  14. Boldt A et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart 2004; 90: 400–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kostin S et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 2002; 54: 361–379.

    Article  CAS  PubMed  Google Scholar 

  16. Schotten U et al. Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation 2001; 103: 691–698.

    Article  CAS  PubMed  Google Scholar 

  17. Shi Y et al. Remodelling of atrial dimensions and emptying function in canine models of atrial fibrillation. Cardiovasc Res 2001; 52: 217–225.

    Article  CAS  PubMed  Google Scholar 

  18. Kaschina E, Unger T . Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Pressure 2003; 12: 70–88.

    Article  CAS  PubMed  Google Scholar 

  19. Rogg H et al. Angiotensin II-receptor subtypes in human atria and evidence for alterations in patients with cardiac dysfunction. Eur Heart J 1996; 17: 1112–1120.

    Article  CAS  PubMed  Google Scholar 

  20. Matsubara H . Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 1998; 83: 1182–1191.

    Article  CAS  PubMed  Google Scholar 

  21. Goette A et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 2000; 101: 2678–2681.

    Article  CAS  PubMed  Google Scholar 

  22. Boldt A et al. Expression of angiotensin II receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease. J Am Coll Cardiol 2003; 42: 1785–1792.

    Article  CAS  PubMed  Google Scholar 

  23. Goette A et al. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 2000; 35: 1669–1677.

    Article  CAS  PubMed  Google Scholar 

  24. Yano M et al. Differential activation of cardiac c-jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ Res 1998; 83: 752–760.

    Article  CAS  PubMed  Google Scholar 

  25. Cardin S et al. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc Res 2003; 60: 315–325.

    Article  CAS  PubMed  Google Scholar 

  26. Engelmann MD, Svendsen JH . Inflammation in the genesis and perpetuation of atrial fibrillation. Eur Heart J [Epub ahead of print; doi:10.1093/eurheartj/chi350].

  27. Das UN . Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit 2005; 11: RA155–RA162.

    CAS  PubMed  Google Scholar 

  28. Tsai CT et al. Renin–angiotensin system gene polymorphisms and atrial fibrillation. Circulation 2004; 109: 1640–1646.

    Article  CAS  PubMed  Google Scholar 

  29. Ogimoto A et al. Relation between angiotensin-converting enzyme II genotype and atrial fibrillation in Japanese patients with hypertrophic cardiomyopathy. J Hum Genet 2002; 47: 184–189.

    Article  CAS  PubMed  Google Scholar 

  30. Gensini F et al. Angiotensin-converting enzyme and endothelial nitric oxide synthase polymorphisms in patients with atrial fibrillation. Pacing Clin Electrophysiol 2003; 26: 295–298.

    Article  PubMed  Google Scholar 

  31. Brown NJ, Vaughan DE . Prothrombotic effects of angiotensin. Adv Intern Med 2000; 45: 419–429.

    CAS  PubMed  Google Scholar 

  32. Healey JS et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol 2005; 45: 1832–1839.

    Article  CAS  PubMed  Google Scholar 

  33. Swedberg K et al. Prevention of atrial fibrillation in symptomatic chronic heart failure by candesartan: results from the CHARM study (abstr). J Am Coll Cardiol 2004; 23 (Suppl A): 222A.

    Article  Google Scholar 

  34. Maggioni AP et al. Val-HeFT Investigators. Valsartan reduces the incidence of atrial fibrillation in patients with heart failure: results from the Valsartan Heart Failure Trial (Val-HeFT). Am Heart J 2005; 149: 548–557.

    Article  CAS  PubMed  Google Scholar 

  35. Wachtell K et al. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol 2005; 45: 712–719.

    Article  CAS  PubMed  Google Scholar 

  36. Hansson L et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension (STOP)-2 study. Lancet 1999; 354: 1751–1756.

    Article  CAS  PubMed  Google Scholar 

  37. Hansson L et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999; 353: 611–616.

    Article  CAS  PubMed  Google Scholar 

  38. Vermes E et al. Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: insight from the Studies Of Left Ventricular Dysfunction (SOLVD) trials. Circulation 2003; 107: 2926–2931.

    Article  PubMed  Google Scholar 

  39. Pedersen OD, Bagger H, Kober L, Torp-Pedersen C . The occurrence and prognostic significance of atrial fibrillation/-flutter following acute myocardial infarction. TRACE Study group. TRAndolapril Cardiac Evalution. Eur Heart J 1999; 20: 748–754.

    Article  CAS  PubMed  Google Scholar 

  40. Madrid AH et al. Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. Circulation 2002; 106: 331–336.

    Article  CAS  PubMed  Google Scholar 

  41. Ueng KC et al. Use of enalapril to facilitate sinus rhythm maintenance after external cardioversion of long-standing persistent atrial fibrillation. Results of a prospective and controlled study. Eur Heart J 2003; 24: 2090–2098.

    Article  CAS  PubMed  Google Scholar 

  42. Gavras I, Gavras H . The antiarrhythmic potential of angiotensin II antagonism: experience with losartan. Am J Hypertens 2000; 13: 512–517.

    Article  CAS  PubMed  Google Scholar 

  43. van Eickels M et al. Angiotensin-converting enzyme inhibitors block mitogenic signalling pathways in rat cardiac fibroblasts. Naunyn-Schmiedeberg's Arch Pharmacol 1999; 359: 394–399.

    Article  CAS  Google Scholar 

  44. Li D et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 2001; 104: 2608–2614.

    Article  CAS  PubMed  Google Scholar 

  45. Nakashima H et al. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation 2000; 101: 2612–2617.

    Article  CAS  PubMed  Google Scholar 

  46. Kumagai K et al. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol 2003; 41: 2197–2204.

    Article  CAS  PubMed  Google Scholar 

  47. Kothari SA, Le MK, Gandhi PJ . Effects of angiotensin converting enzyme inhibitors on thrombotic mediators: potential clinical implications. J Thromb Thrombolysis 2003; 15: 217–225.

    Article  CAS  PubMed  Google Scholar 

  48. Willaims B et al. British Hypertension Society. Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV. J Hum Hypertens 2004; 18: 139–185.

    Article  Google Scholar 

  49. He FJ, MacGregor GA . Cost of poor blood pressure control in the UK: 62 000 unnecessary deaths per year. J Hum Hypertens 2003; 17: 455–457.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Y H Lip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boos, C., Lip, G. Targeting the renin–angiotensin–aldosterone system in atrial fibrillation: from pathophysiology to clinical trials. J Hum Hypertens 19, 855–859 (2005). https://doi.org/10.1038/sj.jhh.1001933

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001933

This article is cited by

Search

Quick links