Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Angiotensin II as a cardiovascular risk factor

Abstract

A renin-angiotensin level that is inappropriately high for the systemic blood pressure and the state of sodium balance is now recognized to be one of the modifiable cardiovascular risk factors. Angiotensin acts both as a circulating hormone and as a locally acting paracrine/autocrine/intracrine factor. The adverse effects of angiotensin on the heart include the mechanical results of elevated resistance to the pumping function of the myocardium, as well as the effects of neurohumoral abnormalities on various cardiac structures. In addition, cardiac damage follows acute ischaemic injury or chronic energy starvation due to coronary artery disease, attributable to either mechanical obstruction (atherosclerotic and/or thrombotic) or functional stenosis (vasospasm). Activation of the renin-angiotensin system has several haemodynamic and humoral consequences, all of which may damage the myocardium. These include acute myocardial ischaemia, left-ventricular hypertrophy, arrhythmias, alterations in the coagulation–fibrinolysis equilibrium, increased oxi- dative stress, and pro-inflammatory activity. A brief review of some of the mechanisms by which activation of the renin-angiotensin system can inflict damage on the heart is presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gavras H et al. Acute renal failure, tubular necrosis and myocardial infarction induced in the rabbit by intravenous angiotensin II Lancet 1971 2: 19–22

    Article  CAS  PubMed  Google Scholar 

  2. Gavras H et al. Angiotensin- and norepinephrine-induced myocardial lesions: experimental and clinical studies in rabbits and man Am Heart J 1975 89: 321–332

    Article  CAS  PubMed  Google Scholar 

  3. Tan LB et al. Cardiac myocyte necrosis induced by angiotensin II Circ Res 1991 69: 1185–1195

    Article  CAS  PubMed  Google Scholar 

  4. Weber KT, Brilla CG, Campbell SE, Reddy HK . Myocardial fibrosis and the concepts of cardioprotection and cardioreparation J Hypertens 1992 10 (Suppl 5): S87–S94

    Google Scholar 

  5. Liang C, Gavras H, Hood WB Jr . Renin-angiotensin system inhibition in conscious sodium-depleted dogs. Effects on systemic and coronary hemodynamics J Clin Invest 1978 61: 874–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gavras H, Liang C, Brunner HR . Redistribution of regional blood flow after inhibition of the angiotensin converting enzyme Circ Res 1978 43 (Suppl 1): S59–S63

    Google Scholar 

  7. Liang C, Gavras H . Renin-angiotensin system inhibition in conscious dogs during acute hypoxemia: effects on systemic hemodynamics, regional blood flows, and tissue metabolism J Clin Invest 1978 62: 961–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gavras H et al. Angiotensin II inhibition. Treatment of congestive cardiac failure in a high-renin hypertension JAMA 1977 238: 880–882

    Article  CAS  PubMed  Google Scholar 

  9. Faxon DP et al. The effect of angiotensin converting enzyme inhibition on coronary blood flow and hemodynamics inpatients without coronary artery disease Int J Cardiol 1982 2: 251–262

    Article  CAS  PubMed  Google Scholar 

  10. Magrini F et al. Converting-enzyme inhibition and coronary blood flow Circulation 1987 75 (Suppl 1): I168–I174

    Google Scholar 

  11. Mettauer B, Rouleau JL, Daly P . The effect of captopril on the coronary circulation and myocardial metab-olism ofpatients with coronary artery disease Postgrad Med J 1986 62 (Suppl 1): 54–58

    Google Scholar 

  12. Strozzi C et al. Effects of captopril on the physical work capacity of normotensivepatients with stable-effort angina pectoris Cardiology 1987 74: 226–228

    Article  CAS  PubMed  Google Scholar 

  13. Strozzi C, Portaluppi F, Cocco G, Urso L . Ergometric evaluation of the effects of enalapril maleate in normotensivepatients with stable angina Clin Cardiol 1988 11: 246–249

    Article  CAS  PubMed  Google Scholar 

  14. Gasic S, Dudczak R, Korn A, Kleinbloesem C . ACE inhibition with cilazapril improves myocardial perfusion to the ischemic regions during exercise: a pilot study J Cardiovasc Pharmacol 1990 15: 227–232

    Article  CAS  PubMed  Google Scholar 

  15. Savage DD et al. Echocardiographic assessment of cardiac anatomy and function in hypertensive subjects Circulation 1979 59: 623–632

    Article  CAS  PubMed  Google Scholar 

  16. Pauletto P et al. Ventricular myosin and creatine-kinase isoenzymes in hypertensive rats treated with captopril Hypertension 1989 14: 556–562

    Article  CAS  PubMed  Google Scholar 

  17. Rogers TB, Gaa ST, Allen IS . Identification and characterization of functional angiotensin II receptors on cultured heart myocytes J Pharmacol Exp Ther 1986 236: 438–444

    CAS  PubMed  Google Scholar 

  18. Allen IS et al. Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: insights into the underlying biochemical mechanisms Circ Res 1988 62: 524–534

    Article  CAS  PubMed  Google Scholar 

  19. Dostal DE, Baker KM . Evidence for a role of an intracardiac renin-angiotensin system in the normal and failing heart Trends Cardiovasc Med 1993 3: 67–74

    Article  CAS  PubMed  Google Scholar 

  20. Dostal DE, Baker KM . Biochemistry, molecular biology, and potential roles of the cardiac renin-angiotensin system. In: Dhalla NS, Beamish RE, Takeda N, Nagano M (eds) The Failing Heart Lippincott-Raven: Philadephia 1995 275–294

    Google Scholar 

  21. Yu C, Tsai M, Stacey DW . Cellular ras activity and phospholipid metabolism Cell 1988 52: 63–71

    Article  CAS  PubMed  Google Scholar 

  22. Knauss TC, Jaffer FE, Abboud HE . Phosphatidic acid modulates DNA synthesis, phospholipase C, and platelet-derived growth factor mRNAs in cultured mesangial cells. Role of protein kinase C J Biol Chem 1990 265: 14457–14463

    CAS  PubMed  Google Scholar 

  23. Moolenaar WH et al. Growth factor-like action of phosphatidic acid Nature 1986 323: 171–173

    Article  CAS  PubMed  Google Scholar 

  24. Nagano M et al. Converting enzyme inhibitors regressed cardiac hypertrophy and reduced tissue angiotensin II in spontaneously hypertensive rats J Hypertens 1991 9: 595–599

    Article  CAS  PubMed  Google Scholar 

  25. Malik KU, Nasjletti A . Facilitation of adrenergic transmission by locally generated angiotensin II in rat mesenteric arteries Circ Res 1976 38: 26–30

    Article  CAS  PubMed  Google Scholar 

  26. Newling RP, Fletcher PJ, Contis M, Shaw J . Noradrenaline and cardiac hypertrophy in the rat: changes in morphology, blood pressure and ventricular performance J Hypertens 1989 7: 561–567

    Article  CAS  PubMed  Google Scholar 

  27. Campbell DJ . Circulating and tissue angiotensin systems J Clin Invest 1987 79: 1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laragh JH . Extrarenal tissue prorenin systems do exist: are intrinsic vascular and cardiac tissue renins fact or fancy? Am J Hypertens 1989 2: 262–265

    Article  CAS  PubMed  Google Scholar 

  29. Goodfriend TL, Elliott ME, Catt KJ . Angiotensin receptors and their antagonists N Engl J Med 1996 334: 1649–1654

    Article  CAS  PubMed  Google Scholar 

  30. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW . Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells Circ Res 1994 74: 1141–1148

    Article  CAS  Google Scholar 

  31. Ames BN, Shigenaga MK, Hagen TM . Oxidants, antioxidants, and the degenerative disease of aging Proc Natl Acad Sci USA 1993 90: 7915–7922

    Article  CAS  PubMed  Google Scholar 

  32. McAlpine HM, Cobbe SM . Neuroendocrine changes in acute myocardial infarction Am J Med 1988 84 (Suppl 3A): 61–66

    Article  Google Scholar 

  33. Rouleau JL et al. Activation of neurohumoral systems following acute myocardial infarction Am J Cardiol 1991 68: 80D–86D

    Article  CAS  PubMed  Google Scholar 

  34. Braunwald E, Kloner RA . Myocardial reperfusion: a double-edged sword? J Clin Invest 1985 76: 1713–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li K, Chen X . Protective effects of captopril and enalapril on myocardial ischemia and reperfusion damage of rat J Mol Cell Cardiol 1987 19: 909–915

    Article  CAS  PubMed  Google Scholar 

  36. Tio RA et al. The effects of oral pretreatment with zofenopril, an angiotensin-converting enzyme inhibitor, on early reperfusion and subsequent electrophysio-logic stability in the pig Cardiovasc Drugs Ther 1990 4: 695–703

    Article  CAS  PubMed  Google Scholar 

  37. Frei B . Reactive oxygen species and antioxidant vita-min: mechanisms of action Am J Med 1994 97 (Suppl 3A): S5–S13

    Article  Google Scholar 

  38. Keaney JF, Frei B . Antioxidant protection of low-density lipoprotein and its role in the prevention of atherosclerotic vascular disease. In: Frei B (ed) Natural Antioxidants in Human Health and Disease Academic Press: Orlando 1994 303–351

    Google Scholar 

  39. Keidar S et al. Low density lipoprotein isolated frompatients with essential hypertension exhibits increased propensity for oxidation and enhanced uptake by macrophages: a possible role for angiotensin II Atherosclerosis 1994 107: 71–84

    Article  CAS  PubMed  Google Scholar 

  40. Brunner HR et al. Essential hypertension: renin and aldosterone, heart attack and stroke N Engl J Med 1972 286: 441–449

    Article  CAS  PubMed  Google Scholar 

  41. Alderman MH et al. Association of the renin-sodium profile with the risk of myocardial infarction inpatients with hypertension N Engl J Med 1991 324: 1098–1104

    Article  CAS  PubMed  Google Scholar 

  42. MacMahon SW, Cutler JA, Furberg CD, Payne GH . The effects of drug treatment for hypertension on morbidity and mortality from cardiovascolar disease: a review of randomized controlled trials ProgCardiovasc Dis 1986 29 (Suppl 1): S99–S118

    Article  Google Scholar 

  43. Chobanian AV, Haudenschild CC, Nickerson C, Drago R . Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit Hypertension 1990 15: 327–331

    Article  CAS  PubMed  Google Scholar 

  44. The SOLVD Investigators. Effect of enalapril on survival inpatients with reduced left ventricular ejection fractions and congestive heart failure N Engl J Med 1991 325: 293–302

  45. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymp-tomaticpatients with reduced left ventricular ejection fractions N Engl J Med 1992 327: 685–691

  46. Yusuf S et al. Effect of enalapril on myocardial infarction and unstable angina inpatients with low ejection fractions Lancet 1992 340: 1173–1178

    Article  CAS  PubMed  Google Scholar 

  47. Sprengers ED, Kluft C . Plasminogen activator inhibitors Blood 1987 69: 381–387

    CAS  PubMed  Google Scholar 

  48. Ridker PM . An epidemiologic assessment of thrombotic risk factors for cardiovascular disease Curr Opin Lipidol 1992 3: 285–290

    Article  Google Scholar 

  49. Hamsten A et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction Lancet 1987 2: 3–9

    Article  CAS  Google Scholar 

  50. Olson JA Jr et al. Angiotensin II induces secretion of plasminogen activator inhibitor I and a tissue metalloprotease inhibitor-related protein from rat brain astrocytes Neurobiology 1991 88: 1928–1932

    CAS  Google Scholar 

  51. Ridker PM et al. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function Circulation 1993 87: 1969–1973

    Article  CAS  PubMed  Google Scholar 

  52. Saito K, Gutkind JS, Saavedra JM . Angiotensin II binding sites in the conduction system of rat hearts Am J Physiol 1987 253: H1618–H1622

    CAS  PubMed  Google Scholar 

  53. Kass RS, Blair ML . Effects of angiotensin II on membrane current in cardiac Purkinje fibers J Mol Cell Cardiol 1981 13: 797–809

    Article  CAS  PubMed  Google Scholar 

  54. de Mello WC . Is an intracellular renin-angiotensin system involved in control of cell communication in heart? J Cardiovasc Pharmacol 1994 23: 640–646

    Article  CAS  PubMed  Google Scholar 

  55. de Mello WC, Crespo MJ . Cardiac refractoriness in rats is reduced by angiotensin II J Cardiovasc Pharmacol 1995 25: 51–56

    Article  CAS  PubMed  Google Scholar 

  56. Rajagopalan S et al. Role for endothelin-1 in angiotensin II-mediated hypertension Hypertension 1997 30: 29–34

    Article  CAS  PubMed  Google Scholar 

  57. Starke K . Action of angiotensin on uptake, release, and metabolism of 14C-noradrenaline by isolated rabbit hearts Eur J Pharmacol 1971 14: 112–123

    Article  CAS  PubMed  Google Scholar 

  58. Aiken JW, Reit E . Stimulation of the cat stellate ganglion by angiotensin J Pharmacol Exp Ther 1968 159: 107–114

    CAS  PubMed  Google Scholar 

  59. Lee WB, Ismay MJ, Lumbers ER . Mechanisms by which angiotensin affects the heart rate of the conscious sheep Circ Res 1980 47: 286–292

    Article  CAS  PubMed  Google Scholar 

  60. Ponikowski P et al. Heart rhythms, ventricular arrhythmias, and death in chronic heart failure J Cardiac Failure 1996 2: 177–183

    Article  CAS  Google Scholar 

  61. de Mello WC, Crespo MJ, Altieri PI . Enalapril increases cardiac refractoriness J Cardiovasc Pharmacol 1992 20: 820–825

    CAS  PubMed  Google Scholar 

  62. Kingma JH et al. Effects of intravenous captopril on inducible sustained ventricular tachycardia Postgrad Med 1986 62: 159–163

    Article  Google Scholar 

  63. Wesseling H et al. Cardiac arrhythmias – a new indication for angiotensin-converting enzyme inhibitors? J Hum Hypertens 1989 3 (Suppl 1): 89–95

    Google Scholar 

  64. van Gilst WH, de Graeff PA, Wesseling H, de Langen CD . Reduction of reperfusion arrhythmias in the is-chemic isolated rat heart by angiotensin converting enzyme inhibitors: a comparison of captopril, enala-pril, and HOE 498 J Cardiovasc Pharmacol 1986 8: 722–728

    CAS  PubMed  Google Scholar 

  65. Sharma D, Buyse M, Pitt B, Rucinska EJ . Meta-analysis of observed mortality data from all-controlled, double-blind, multiple-dose studies of losartan in heart failure Am J Cardiol 2000 85: 187–192

    Article  CAS  PubMed  Google Scholar 

  66. Elliott WJ . Therapeutic trials comparing angiotensin converting enzyme inhibitors and angiotensin II receptor blockers Curr Hypertens Rep 2000 2: 402–411

    Article  CAS  PubMed  Google Scholar 

  67. Kranzhofer R et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells Arterioscler Thromb Vasc Biol 1999 19: 1623–1629

    Article  CAS  PubMed  Google Scholar 

  68. Han Y, Runge MS, Brasier AR . Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors Circ Res 1999 84: 695–703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Gavras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavras, I., Gavras, H. Angiotensin II as a cardiovascular risk factor. J Hum Hypertens 16 (Suppl 2), S2–S6 (2002). https://doi.org/10.1038/sj.jhh.1001392

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001392

Keywords

This article is cited by

Search

Quick links